Research on the distribution and content of water ice in lunar pole regions using Clementine UVVIS data

Zhiguo Meng , Shengbo Chen , Peng Lu , Zijun Wang , Yi Lian , Chao Zhou

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 595 -600.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 595 -600. DOI: 10.1007/s12583-011-0210-9
Article

Research on the distribution and content of water ice in lunar pole regions using Clementine UVVIS data

Author information +
History +
PDF

Abstract

Interest in the Moon started to increase at the beginning of the 21st century, and henceforth, more and more attention has been paid to the content and distribution of water ice in the lunar polar regions. The existence of water or ice in the regolith can apparently change its dielectric features. Therefore, in this article, the Dobson model is adopted and improved according to the Moon’s environmental features, to construct the relationship between the volumetric water ice content and the dielectric constant. Thereafter, a lunar regolith dielectric distribution map is generated based on the improved Dobson model and the Clementine UVVIS data. The map indicates that the imaginary part of the dielectric constants in the lunar mare is much higher than that in the highlands. However, the maximum dielectric constants occur at the north- and south-pole regions, whose values are apparently bigger than those in the middle and low latitudes. Then, an abnormal map of the dielectric constant is gained if the threshold is put as 0.053 7, which is the highest value in the middle and low latitudes. The statistical results indicate that the number of abnormal pixels is 110 596, and the average is about 0.057 9. Assuming that the mean dielectric constant in the lunar mare is the normal dielectric constant at the south and north poles and ɛ 1=11.58+i0.057 9 is the abnormal one, the volumetric water ice content can be evaluated using the advanced Dobson model. The results show that the average volumetric water ice content is about 1.64%, and the total area is about 25 294 km2, where 10 956 km2 belongs to the north pole and the rest is in the south pole.

Keywords

lunar regolith / Clementine UVVIS / Dobson model / dielectric constant map / water ice content

Cite this article

Download citation ▾
Zhiguo Meng, Shengbo Chen, Peng Lu, Zijun Wang, Yi Lian, Chao Zhou. Research on the distribution and content of water ice in lunar pole regions using Clementine UVVIS data. Journal of Earth Science, 2011, 22(5): 595-600 DOI:10.1007/s12583-011-0210-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Academy of Sciences of the USSR Elementary Geocryology, 1988, Beijing: Science Press

[2]

Arnold J. R.. Ice in the Lunar Polar Regions. Journal of Geophysical Research, 1979, 84(B10): 5659-5668.

[3]

Butler B. J.. The Migration of Volatiles on the Surfaces of Mercury and the Moon. Journal of Geophysical Research, 1997, 102(E8): 19283-19291.

[4]

Butler B. J., Muhleman D. O., Slade M. A.. Mercury: Full-Disk Radar Images and the Detection and Stability of Ice at the North Pole. Journal of Geophysical Research, 1993, 98(E8): 15003-15023.

[5]

Campbell D. B., Campbell B. A., Carter L. M., . No Evidence for Thick Deposits of Ice at the Lunar South Pole. Nature, 2006, 443(7113): 835-837.

[6]

Carrier W. D., Mitchell J. K., Mahmood A.. The Relative Density of Lunar Soil. Geochimica et Cosmochimica Acta, 1973, 3(Suppl.4): 2403-2411.

[7]

Carrier W. D., Olhoeft G. R., Mendell W.. Heiken G. H., Vaniman D. T., French B. M.. Physical Properties of the Lunar Surface. Lunar Sourcebook: A User’s Guide to the Moon, 1991, New York: Cambridge University Press

[8]

Crider D. H., Vondrak R. R.. Hydrogen Migration to the Lunar Poles by Solar Wind Bombardment of the Moon. Advances in Space Research, 2002, 30(8): 1869-1874.

[9]

Dobson M. C., Ulaby F. T., Hallikainen M. T., . Microwave Dielectric Behavior of Wet Soil—Part II: Dielectric Mixing Models. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(l): 35-46.

[10]

Feldman W. C., Lawrence D. J., Elphic R. C., . Chemical Information Content of Lunar Thermal and Epithermal Neutrons. Journal of Geophysical Research, 2000, 105(E8): 20347-20363.

[11]

Feldman W. C., Maurice S., Binder A. B., . Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles. Science, 1998, 281(5382): 1496-1500.

[12]

Heiken G. H., Vaniman D. T., French B. M.. Lunar Sourcebook: A User’s Guide to the Moon, 1991, New York: Cambridge University Press

[13]

Hodges R. R.. Ice in the Lunar Polar Regions Revisited. Journal of Geophysical Research, 2002, 107(E2): 6.1-6.7.

[14]

Lawrence D. J., Feldman W. C., Barraclough B. L., . Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. Science, 1998, 281(5382): 1484-1489.

[15]

Li L. Y., Zhang L. X., Zhao S. J.. Laboratory Measurement of the Dielectric Constant of Frozen Soil. Journal of Beijing Normal University (Natural Science), 2007, 43(3): 241-244.

[16]

Lucey P. G., Blewett D. T., Jolliff B. L.. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. Journal of Geophysical Research, 2000, 105(E8): 20297-20305.

[17]

Lucey P. G., Blewett D. T., Hawke B. R.. Mapping the FeO and TiO2 Content of the Lunar Surface Multispectral Imagery. Journal of Geophysical Research, 1998, 103(E2): 3679-3699.

[18]

Meng Z. G., Chen S. B., Osei E. M., . Research on Water Ice Content in Cabeus Crater Using the Data from Microwave Radiometer onboard Chang’E-1 Satellite. Science China (Physics, Mechanics & Astronomy), 2010, 40(11): 1363-1369.

[19]

Neal C. R.. The Moon 35 Years after Apollo: What’s Left to Learn. Chemie der Erde, 2009, 69(1): 3-43.

[20]

Nozette S., Lichtenberg C. L., Spudis P., . The Clementine Bistatic Radar Experiment. Science, 1996, 274(5292): 1495-1498.

[21]

Nozette S., Spudis P. D., Robinson M. S., . Integration of Lunar Polar Remote Sensing Data Sets: Evidence for Ice at the Lunar South Pole. Journal of Geophysical Research, 2001, 106(E10): 23253-23266.

[22]

Ouyang Z. Y.. Introduction to Lunar Science, 2005, Beijing: China Astronautic Publishing House

[23]

Shkuratov Y. G., Bondarenko N. V.. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus, 2001, 149(2): 329-338.

[24]

Shkuratov Y. G., Kaydash V. G., Opanasenko N. V.. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 1999, 137(2): 222-234.

[25]

Simpson R. A., Tyler G. L.. Reanalysis of Clementine Bistatic Radar Data from the Lunar South Pole. Journal of Geophysical Research, 1999, 104(E2): 3845-3862.

[26]

Vasavada A. R., Paige D. A., Wood S. E.. Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits. Icarus, 1999, 141(2): 179-193.

[27]

Watson K., Murray B. C., Brown H.. The Behavior of Volatiles on the Lunar Surface. Journal of Geophysical Research, 1961, 66(9): 3033-3045.

[28]

Zhang, L. X., Shi, J. C., Zhang, Z. J., et al., 2003. The Estimation of Dielectric Constant of Frozen Soil-Water Mixture at Microwave Bands. In: Proceedings of 23rd International Geoscience and Remote Sensing Symposium (IGRASS 2003). Toulouse, France

[29]

Zhang W. G., Jiang J. S., Liu H. G., . Distribution and Anomaly of Microwave Emission at Lunar South Pole. Science China (Series D), 2009, 39(8): 1059-1068.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/