A systematic spectroscopic study of four Apollo lunar soils

Zongcheng Ling , Alian Wang , Bradley L. Jolliff

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 578 -585.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 578 -585. DOI: 10.1007/s12583-011-0208-3
Article

A systematic spectroscopic study of four Apollo lunar soils

Author information +
History +
PDF

Abstract

A systematic spectroscopic study including Raman, Mid-IR, NIR, and VIS-NIR, is used to investigate four endmember lunar soils. Apollo soils (<45 μm) 14163, 15271, 67511, and 71501 were selected as endmembers to study, based on their soil chemistry, maturity against space weathering, and the sampling locations. These endmembers include an anorthositic highlands soil (67511), a low-Ti basaltic soil (15271), a high-Ti basaltic soil (71501), and a mafic, KREEPy, impact-melt-rich soil (14163). We used a laser Raman point-counting procedure to derive mineral modes of the soils and the compositional distributions of major mineral phases, which in turn reflect characteristics of the main source materials for these soils. The Mid-IR, NIR, and VIS-NIR spectroscopic properties also yield distinct information on mineralogy, geochemistry, and maturity among the four soils. Knowledge of the mineralogy resulting from the Raman point-counting procedure corresponds well with bulk mineralogy and soil properties based on Mid-IR, NIR, and VIS-NIR spectroscopy. The future synergistic application of these spectroscopy methods on the Moon will provide a linkage between the results from in situ surface exploration and those from orbital remote-sensing observations.

Keywords

geochemistry / mineralogy / planetary structural geology

Cite this article

Download citation ▾
Zongcheng Ling, Alian Wang, Bradley L. Jolliff. A systematic spectroscopic study of four Apollo lunar soils. Journal of Earth Science, 2011, 22(5): 578-585 DOI:10.1007/s12583-011-0208-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams J. B.. Visible and Near Infrared Diffuse Reflectance Spectra of Pyroxene as Applied to Remote Sensing of Solid Objects in the Solar System. Journal of Geophysical Research, 1974, 79(32): 4829-4836.

[2]

Bell J. F., Squyres S. W., Herkenhoff K. E., . Mars Exploration Rover Athena Panoramic Camera (Pancam) Investigation. Journal of Geophysical Ressearch, 2003, 108 E12 8063

[3]

Bibring J. P., Langevin Y., Gendrin A., . Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science, 2005, 307(5715): 1576-1581.

[4]

Christensen P. R., Bandfield J. L., Hamilton V. E., . Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. Journal of Geophysical Research, 2001, 106(E10): 23823-23871.

[5]

Christensen P. R., Jakosky B., Kieffer H. H., . The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 2004, 110(1–2): 85-130.

[6]

Christensen P. R., Mehall G. L., Silverman S. H., . Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 2003, 108 E12 8064

[7]

Clark R. N.. Detection of Adsorbed Water and Hydroxyl on the Moon. Science, 2009, 326(5952): 562-564.

[8]

Freeman J. J., Wang A., Kuebler K. E., . Characterization of Natural Feldspars by Raman Spectroscopy for Future Planetary Exploration. Canadian Mineralogist, 2008, 46: 1477-1500.

[9]

Haskin L. A., Wang A., Rockow K. M., . Raman Spectroscopy for Mineral Identification and Quantification for in situ Planetary Surface Analysis: A Point Count Method. Journal of Geophysical Research, 1997, 102(E8): 19293-19306.

[10]

Isaacson, P. J., Pieters, C. M., 2007. Spectroscopic Investigation of the Water Content of Lunar Soil. In: Proceedings of 38th Lunar and Planetary Science Conference. Huston, United States

[11]

Jolliff B. L., Hughes J. M., Freeman J. J., . Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic and Planetary Suites of Whitlockite and Merrillite. American Mineralogist, 2006, 91(10): 1583-1595.

[12]

Kuebler K. E., Jolliff B. L., Wang A., . Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochimica et Cosmochimica Acta, 2006, 70(24): 6201-6222.

[13]

Ling Z. C., Wang A., Jolliff B. L.. Mineralogy and Geochemistry of Four Lunar Soils by Laser-Raman Study. Icarus, 2011, 211(1): 101-113.

[14]

Matsunaga T., Ohtake M., Haruyama J., . Discoveries on the Lithology of Lunar Crater Central Peaks by SELENE Spectral Profiler. Geophyssical Research Letters, 2008, 35 23 L23201

[15]

Morris, R. V., 1978. The Surface Exposure (Maturity) of Lunar Soils—Some Concepts and Is/FeO Compilation. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States

[16]

Murchie S., Arvidson R., Bedini P., . Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 2007, 112 E05S03

[17]

Paige D. A., Foote M. C., Greenhagen B. T., . The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Science Reviews, 2010, 150(1–4): 125-160.

[18]

Pieters C. M., Englert P. A. J.. Remote Geochemical Analysis, Elemental and Mineralogical Composition, 1993, Cambridge: Cambridge University Press

[19]

Pieters C. M., Fischer E. M., Rode O., . Optical Effects of Space Weathering—The Role of the Finest Fraction. Journal of Geophysical Research, 1993, 98(E11): 20817-20824.

[20]

Pieters C. M., Goswami J. N., Clark R. N., . Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M-3 on Chandrayaan-1. Science, 2009, 326(5952): 568-572.

[21]

Pieters C. M., Shkuratov Y., Kaydash V., . Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 2006, 184(1): 83-101.

[22]

Sunshine J. M., Farnham T. L., Feaga L. M., . Temporal and Spatial Variability of Lunar Hydration as Observed by the Deep Impact Spacecraft. Science, 2009, 326(5952): 565-568.

[23]

Wang A., Haskin L. A., Lane A. L., . Development of the Mars Microbeam Raman Spectrometer (MMRS). Journal of Geophysical Research, 2003, 108 E1 5005

[24]

Wang A., Jolliff B. L., Haskin L. A.. Raman-Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions. Journal of Geophysical Research, 1995, 100(E10): 21189-21199.

[25]

Wang A., Jolliff B. L., Haskin L. A., . Characterization and Comparison of Structural and Compositional Features of Planetary Quadrilateral Pyroxenes by Raman Spectroscopy. American Mineralogist, 2001, 86(7–8): 790-806.

[26]

Wang A., Kuebler K. E., Jolliff B. L., . Raman Spectroscopy of Fe-Ti-Cr-Oxides, Case Study: Martian Meteorite EETA79001. American Mineralogist, 2004, 89(5–6): 665-680.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/