Noble gas diffusion mechanism in lunar soil simulant grains: Results from 4He+ implantation and extraction experiments

Xiaohui Fu , Yongliao Zou , Yongchun Zheng , Huaiyu He , Ziyuan Ouyang

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 566 -577.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 566 -577. DOI: 10.1007/s12583-011-0207-4
Article

Noble gas diffusion mechanism in lunar soil simulant grains: Results from 4He+ implantation and extraction experiments

Author information +
History +
PDF

Abstract

Experiments on ion implantation were performed in order to better characterize diffusion of noble gases in lunar soil. 4He+ at 50 keV with 5×1016 ions/cm2 was implanted into lunar simulants and crystal ilmenite. Helium in the samples was released by stepwise heating experiments. Based on the data, we calculated the helium diffusion coefficient and activation energy. Lunar simulants display similar 4He release patterns in curve shape as lunar soil, but release temperatures are a little lower. This is probably a consequence of long-term diffusion after implantation in lunar soil grains. Variation of activation energy was identified in the Arrhenius plots of lunar simulants and Panzhihua (攀枝花) ilmenite. We conclude that noble gas release in lunar soil cannot be described as simple thermally activated volume diffusion. Variation of diffusion parameters could be attributed to physical transformation during high temperature. Radiation damage probably impedes helium diffusion. However, bubble radius growth during heating does not correlate with activation energy variation. Activation energy of Panzhihua ilmenite is 57.935 kJ/mol. The experimental results confirm that ilmenite is more retentive for noble gas than other lunar materials.

Keywords

noble gas / solar wind / diffusion / lunar soil / the Moon

Cite this article

Download citation ▾
Xiaohui Fu, Yongliao Zou, Yongchun Zheng, Huaiyu He, Ziyuan Ouyang. Noble gas diffusion mechanism in lunar soil simulant grains: Results from 4He+ implantation and extraction experiments. Journal of Earth Science, 2011, 22(5): 566-577 DOI:10.1007/s12583-011-0207-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anufriev G. S.. Hopping Diffusion of Helium Isotopes from Samples of Lunar Soil. Physics of the Solid State, 2010, 52(10): 2058-2062.

[2]

Benkert J. P., Baur H., Signer P., . He, Ne, and Ar from the Solar Wind and Solar Energetic Particles in Lunar Ilmenites and Pyroxenes. J. Geophys. Res., 1993, 98(E7): 13147-13162.

[3]

Bibring, J. P., Borg, J., Burlingame, A. L., et al., 1975. Solar-Wind and Solar-Flare Maturation of the Lunar Regolith. In: Proceedings of the 6th Lunar and Planetary Science Conference. California, United States. 3471–3493

[4]

Borg J., Chaumont J., Jouret C., . Pepin R. O., Eddy J. A., Merrill R. B., . Solar Wind Radiation Damage in Lunar Dust Grains and the Characteristics of the Ancient Solar Wind. The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites, 1980, New York: Pergamon Press 431 461

[5]

Brownlee, D. E., Joswiak, D. J., Bradley, J. P., et al., 1998. Tiny Bubbles: Direct Observation of He in IDPs. In: Proceedings of the 29th Lunar and Planetary Science Conference. Houston, TX, United States

[6]

Carrez P., Demyk K., Cordier P., . Low-Energy Helium Ion Irradiation-Induced Amorphization and Chemical Changes in Olivine: Insights for Silicate Dust Evolution in the Interstellar Medium. Meteoritics and Planetary Science, 2002, 37(11): 1599-1614.

[7]

Cherniak D. J., Watson E. B., Thomas J. B.. Diffusion of Helium in Zircon and Apatite. Chemical Geology, 2009, 268(1–2): 155-166.

[8]

Demyk K., Carrez P., Leroux H., . Structural and Chemical Alteration of Crystalline Olivine under Low Energy He+ Irradiation. Astronomy & Astrophysics, 2001, 368(3): L38-L41.

[9]

Demyk K., d’Hendecourt L., Leroux H., . IR Spectroscopic Study of Olivine, Enstatite and Diopside Irradiated with Low Energy H+ and He+ Ions. Astronomy & Astrophysics, 2004, 420(1): 233-243.

[10]

Ducati H., Kalbitzer S., Kiko J., . Rare Gas Diffusion Studies in Individual Lunar Soil Particles and in Artificially Implanted Glasses. The Moon, 1973, 8(1–2): 210-227.

[11]

Eberhardt P., Geiss J., Groegler N., . Noble Gases in Apollo 16 Lunar Fines, 1973, Houston: Lunar Sci. Inst. 209 211

[12]

Eugster O., Geiss J., Krahenbuhl U., . Noble Gas Isotopic Composition, Cosmic Ray Exposure History, and Terrestrial Age of the Meteorite Allan Hills A81005 from the Moon. Earth and Planetary Science Letters, 1986, 78(2–3): 139-147.

[13]

Farley K. A., Stockli D. F.. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime. Reviews in Mineralogy and Geochemistry, 2002, 48: 559-577.

[14]

Farley K. A., Wolf R. A., Silver L. T.. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 1996, 60(21): 4223-4229.

[15]

Fechtig H., Kalbitzer S.. Schaeffer O. A., Zahringer J.. The Diffusion of Argon in Potassium-Bearing Solids. Potassium Argon Dating, 1966, Heidelberg: Springer 68 107

[16]

Frick, U., Becker, R. H., Pepin, R. O., 1988. Solar Wind Record in the Lunar Regolith: Nitrogen and Noble Gases. In: Proceedings of the 18th Lunar and Planetary Science Conference. Houston, TX, United States. 87–120

[17]

Frick, U., Mack, R., Chang, S., 1979. Noble Gas Trapping and Fractionation during Synthesis of Carbonaceous Matter. In: Proceedings of the 10th Lunar and Planetary Science Conference. Houston, TX, United States. 1961–1973

[18]

Futagami T., Ozima M., Nagal S., . Experiments on Thermal Release of Implanted Noble Gases from Minerals and Their Implications for Noble Gases in Lunar Soil Grains. Geochimica et Cosmochimica Acta, 1993, 57(13): 3177-3194.

[19]

Futagami T., Ozima M., Nakamura Y.. Helium Ion Implantation into Minerals. Earth and Planetary Science Letters, 1990, 101(1): 63-67.

[20]

Heber V. S., Baur H., Wieler R.. Helium in Lunar Samples Analyzed by High-Resolution Stepwise Etching: Implications for the Temporal Constancy of Solar Wind Isotopic Composition. Astrophysical Journal, 2003, 597(1): 602-614.

[21]

Heiken G. H., Vaniman D. T., French B. M.. Lunar Sourcebook: A User’s Guide to the Moon, 1991, Cambridge: Cambridge University Press

[22]

Hohenberg C. M., Davis P. K., Kaiser W. A., . Trapped and Cosmogenic Rare Gases from Stepwise Heating of Apollo 11 Samples, 1970, New York, Oxford: Pergamon Press 1283 1309

[23]

Honda M., Nutman A. P., Bennett V. C., . Radiogenic, Nucleogenic and Fissiogenic Noble Gas Compositions in Early Archaean Magmatic Zircons from Greenland. Geochemical Journal, 2004, 38(3): 265-269.

[24]

Hutcheon I. D., Phakey P. P., Price P. B.. Studies Bearing on the History of Lunar Breccias. Geochimica et Cosmochimica Acta, 1972, 3(3): 2845-2865.

[25]

Jager C., Fabian D., Schrempel F., . Structural Processing of Enstatite by Ion Bombardment. Astronomy & Astrophysics, 2003, 401(1): 57-65.

[26]

Kiko J., Mahninger N., Rittershausen W., . Correlation between Solar Wind 4He Distribution and Noble Gas Fractionation in Lunar Ilmenites. Meteoritics, 1981, 16(4): 339-340.

[27]

Kuhlman H., Renae K.. Trapping and Diffusion of Helium in Lunar Minerals: [Dissertation], 1998, Madison: The University of Wisconsin

[28]

Li Y. Q., Liu J. Z., Yue Z. Y.. Nao-1: A Lunar Highland Soil Simulant Developed in China. Journal of Aerospace Engineering, 2009, 22(1): 53-57.

[29]

Mueller, H. W., Kiko, J., Kirsten, T., 1976. High Resolution Depth Profiles of Rare Gases in Individual Lunar Soil Particles. In: Proceedings of the 7th Lunar and Planetary Science Conference. Houston, TX, United States. 577

[30]

Oliviero E., David M. L., Beaufort M. F., . On the Effects of Implantation Temperature in Helium Implanted Silicon. Applied Physics Letters, 2002, 81(22): 4201-4203.

[31]

Ozima M., Yin Q. Z., Podosek F. A., . Toward Understanding Early Earth Evolution: Prescription for Approach from Terrestrial Noble Gas and Light Element Records in Lunar Soils. Proceedings of the National Academy of Sciences, USA, 2008, 105(46): 17654-17658.

[32]

Pepin R. O., Becker R. H., Schlutter D. J.. Irradiation Records in Regolith Materials. I: Isotopic Compositions of Solar-Wind Neon and Argon in Single Lunar Mineral Grains. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2145-2162.

[33]

Pepin R. O., Nyquist L. E., Phinney D., . Rare Gases in Apollo 11 Lunar Material, 1970, New York, Oxford: Pergamon Press 1435 1454

[34]

Pillinger C. T.. Solar-Wind Exposure Effects in the Lunar Soil. Reports on Progress in Physics, 1979, 42(2): 897-961.

[35]

Raineri V., Saggio M., Rimini E.. Voids in Silicon by He Implantation: From Basic to Applications. Journal of Materials Research, 2000, 15(7): 1449-1477.

[36]

Reiners P. W.. Zircon (U-Th)/He Thermochronometry. Reviews in Mineralogy and Geochemistry, 2005, 58: 151-179.

[37]

Reiners P. W., Campbell I. H., Nicolescu S., . (U-Th)/(He-Pb) Double Dating of Detrital Zircons. American Journal of Science, 2005, 305(4): 259-311.

[38]

Reiners P. W., Farley K. A.. Helium Diffusion and (U-Th)/He Thermochronometry of Titanite. Geochimica et Cosmochimica Acta, 1999, 63(22): 3845-3859.

[39]

Reiners P. W., Farley K. A., Hickes H. J.. He Diffusion and (U-Th)/He Thermochronometry of Zircon: Initial Results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 2002, 349(1–4): 297-308.

[40]

Reiners P. W., Spell T. L., Nicolescu S., . Zircon (U-Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 2004, 68(8): 1857-1887.

[41]

Sharafat S., Takahashi A., Hu Q., . A Description of Bubble Growth and Gas Release of Helium Implanted Tungsten. Journal of Nuclear Materials, 2009, 386: 900-903.

[42]

Shuster D. L.. Application of Spallogenic Noble Gases Induced by Energetic Proton Irradiation to Problems in Geochemistry and Thermochronometry: [Dissertation], 2005, Pasadena: California Institute of Technology 173

[43]

Shuster D. L., Farley K. A.. The Influence of Artificial Radiation Damage and Thermal Annealing on Helium Diffusion Kinetics in Apatite. Geochimica et Cosmochimica Acta, 2009, 73(1): 183-196.

[44]

Shuster D. L., Flowers R. M., Farley K. A.. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 2006, 249(3–4): 148-161.

[45]

Tamhane A. S., Agrawal J. K.. Diffusion of Rare Gases of Solar Wind Origin from Lunar Fines as Bubbles. Earth and Planetary Science Letters, 1979, 42(2): 243-250.

[46]

Trull T. W., Kurz M. D., Jenkins W. J.. Diffusion of Cosmogenic 3He in Olivine and Quartz: Implications for Surface Exposure Dating. Earth and Planetary Science Letters, 1991, 103(1–4): 241-256.

[47]

Watson E. B., Baxter E. F.. Diffusion in Solid-Earth Systems. Earth and Planetary Science Letters, 2007, 253(3–4): 307-327.

[48]

Wieler R., Baur H.. Fractionation of Xe, Kr, and Ar in the Solar Corpuscular Radiation Deduced by Closed System Etching of Lunar Soils. Astrophysical Journal, 1995, 453(2): 987-997.

[49]

Wieler R., Baur H., Signer P.. Noble Gases from Solar Energetic Particles Revealed by Closed System Stepwise Etching of Lunar Soil Minerals. Geochimica et Cosmochimica Acta, 1986, 50(9): 1997-2017.

[50]

Wieler R., Heber V.. Noble Gas Isotopes on the Moon. Space Science Reviews, 2003, 106(1–4): 197-210.

[51]

Yi L. J.. Study of Cavity Formation and Helium Desorption in Crystalline Si Implanted with He Ions: [Dissertation], 2007, Tianjin: Tianjin University

[52]

Zashu S., Hiyagon H.. Degassing Mechanisms of Noble Gases from Carbonado Diamonds. Geochimica et Cosmochimica Acta, 1995, 59(7): 1321-1328.

[53]

Zeitler P. K., Herczeg A. L., McDougall I., . U-Th-He Dating of Apatite: A Potential Thermochronometer. Geochimica et Cosmochimica Acta, 1987, 51(10): 2865-2868.

[54]

Zheng Y. C., Wang S. J., Ouyang Z. Y., . Cas-1 Lunar Soil Simulant. Advances in Space Research, 2009, 43(3): 448-454.

[55]

Ziegler J. F., Ziegler M. D., Biersack J. P.. SRIM: The Stopping and Range of Ions in Matter. Nuclear Instruments & Methods in Physics Research, 2010, 268(11–12): 1818-1823.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/