PDF
Abstract
Partial least squares (PLS) regression was applied to the Lunar Soil Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the low-Ti, high-Ti, total mare soils, total highland, Apollo 16, and Apollo 14 soils to investigate the effects of interfering minerals and nonlinearity on the PLS performance. The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance. PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together. The results suggest that while the dominant TiO2-bearing minerals are few, additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2, to accommodate nonlinear relationships between reflectance and TiO2, and to correct inconsistent mineral-TiO2 correlations between the high-Ti and low-Ti mare samples. Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups. For the LSCC Apollo 16 samples, the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2. For the Apollo 14 soils, more accurate estimation for TiO2 is attributed to the positive correlation between a major TiO2-bearing component and TiO2, explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups.
Keywords
lunar soils
/
LSCC dataset
/
TiO2 abundance
/
partial least squares
/
stepwise multiple regression
Cite this article
Download citation ▾
Lin Li.
Quantifying TiO2 abundance of lunar soils: Partial least squares and stepwise multiple regression analysis for determining causal effect.
Journal of Earth Science, 2011, 22(5): 549-565 DOI:10.1007/s12583-011-0206-5
| [1] |
Blewett D. T., Lucey P. G., Hawke B. R., . Clementine Images of the Lunar Sample-Return Stations: Refinement of FeO and TiO2 Mapping Techniques. J. Geophys. Res., 1997, 102(E7): 16319-16325.
|
| [2] |
Charette M. P., McCord T. B., Pieters C. M., . Application of Remote Spectral Reflectance Measurements to Lunar Geology Classification and Determination of Titanium Content of Lunar Soils. J. Geophys. Res., 1974, 79(11): 1605-1613.
|
| [3] |
De Jong S.. SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems, 1993, 18(3): 251-263.
|
| [4] |
Geladi P., Kowalski B. R.. Partial Least Squares Regression: A Tutorial. Analytia Chimica Acta, 1986, 185: 1-17.
|
| [5] |
Giguere T. A., Taylor G. J., Hawke B. R., . The Titanium Contents of Lunar Mare Basalts. Meteorit. Planet. Sci., 2000, 35(1): 193-200.
|
| [6] |
Gillis J. J., Jolliff B. L., Elphic R. C.. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. J. Geophys. Res., 2003, 108 E2 5009
|
| [7] |
Gillis J. J., Jolliff B. L., Korotev R. L.. Lunar Surface Geochemistry: Global Concentrations of Th, K, and FeO as Derived from Lunar Prospector and Clementine Data. Geochim. Cosmochim. Acta, 2004, 68(18): 3791-3805.
|
| [8] |
Gillis-Davis J. J., Lucey P. G., Hawke B. R.. Testing the Relation between UV-VIS Color and TiO2 Content of the Lunar Maria. Geochim. Cosmochim. Acta, 2006, 70(24): 6079-6102.
|
| [9] |
Greeley R., Kadel S. D., Williams D. A., . Galileo Imaging Observations of Lunar Maria and Related Depos its. J. Geophys. Res., 1993, 98(E9): 17183-17205.
|
| [10] |
Haaland D. M., Thomas E. V.. Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 1988, 60(11): 1193-1202.
|
| [11] |
Haaland D. M., Thomas E. V.. Partial Least-Squares Methods for Spectral Analyses. 2. Application to Simulated and Glass Spectral Data. Analytical Chemistry, 1988, 60(11): 1202-1208.
|
| [12] |
Hapke B.. Theory of Reflectance and Emittance Spectroscopy, 2005, Cambridge: Cambridge Univ. Press
|
| [13] |
Jaumann R.. Spectral-Chemical Analysis of Lunar Surface Materials. J. Geophys. Res., 1991, 96(E5): 22793-22807.
|
| [14] |
Johnson J. R., Larson S. M., Singer R. B.. Remote Sensing of Potential Lunar Resources 1. Near-Side Compositional Properties. J. Geophys. Res., 1991, 96(E3): 18861-18882.
|
| [15] |
Kodama S., Yamaguchi Y.. Lunar Mare Volcanism in the Eastern Nearside Region Derived from Clementine UV/VIS Data. Meteorit. Planet. Sci., 2003, 38(10): 1461-1484.
|
| [16] |
Kodama, S., Yamaguchi, Y., 2005. Mare Volcanism on the Moon Inferred from Clementine UVVIS Data. In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States
|
| [17] |
Korokhin V. V., Kaydash V. G., Shkuratov Y. G., . Prognosis of TiO2 Abundance in Lunar Soil Using a Non-Linear Analysis of Clementine and LSCC Data. Planet. Space Sci., 2008, 56(8): 1063-1078.
|
| [18] |
Le Mouelic S., Langevin Y., Erard S., . Discrimination between Maturity and Composition of Lunar Soils from Integrated Clementine UV-Visible/Near-Infrared Data: Application to the Aristarchus Plateau. J. Geophys. Res., 2000, 105(E4): 9445-9455.
|
| [19] |
Lestander T. A., Leardi R., Geladi P.. Selection of Near Infrared Wavelengths Using Genetic Algorithms for the Determination of Seed Moisture Content. Journal of Near Infrared Spectroscopy, 2003, 11(6): 433-446.
|
| [20] |
Li L.. Partial Least Squares Modeling to Quantify Lunar Soil Composition with Hyperspectral Reflectance Spectra. J. Geophys. Res., 2006, 111 E04002
|
| [21] |
Li L.. Quantifying Lunar Soil Composition with Partial Least Squares Modeling of Reflectance. Advances in Space Research, 2008, 42(2): 267-274.
|
| [22] |
Li L.. Partial Least Squares Methods for Spectrally Estimating Lunar Soil FeO Abundance: A Stratified Approach to Revealing Nonlinear Effect and Qualitative Interpretation. J. Geophys. Res., 2008, 113 E12 E12013
|
| [23] |
Lucey P. G., Blewett D. T., Hawke B. R.. Mapping the FeO and TiO2 Content of the Lunar Surface with Multispectral Imagery. J. Geophys. Res., 1998, 103(E2): 3679-3699.
|
| [24] |
Lucey P. G., Blewett D. T., Jolliff B. L.. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. J. Geophys. Res., 2000, 105(E8): 20297-20305.
|
| [25] |
Lucey P. G., Taylor G. J., Hawke B. R., . FeO and TiO2 Concentrations in the South Pole-Aitken Basin: Implications for Mantle Composition and Basin Formation. J. Geophys. Res., 1998, 103(E2): 3701-3708.
|
| [26] |
Martens H., Naes T.. Multivariate Calibration, 1992, New York: John Wiley and Sons Ltd 438
|
| [27] |
McCord T. B., Clark R. N., Hawke B. R., . Moon: Near-Infrared Spectral Reflectance, a First Good Look. J. Geophys. Res., 1981, 86(B11): 10883-10892.
|
| [28] |
McCord T. B., Pieters C., Feierberg M. A.. Multispectral Mapping of the Lunar Surface Using Ground-Based Telescopes. Icarus, 1976, 29(1): 1-34.
|
| [29] |
Melendrez D., Johnson J. R., Larson S. M., . Remote Sensing of Potential Lunar Resources. 2. High Spatial Resolution Mapping of Spectral Reflectance Ratios and Implications for Nearside Mare TiO2 Content. J. Geophys. Res., 1994, 99(E3): 5601-5619.
|
| [30] |
Miller A. J.. Subset Selection in Regression, 2002, New York: Chapman & Hall/CRS 238
|
| [31] |
Pieters, C. M., 1978. Mare Basalt Types on the Front Side of the Moon: A Summary of Spectral Reflectance Data. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States. 2825–2849
|
| [32] |
Pieters C. M., Head J. W., Sunshine J. M., . Crustal Diversity of the Moon: Compositional Analysis of Galileo Solid State Imaging Data. J. Geophys. Res., 1993, 98(E9): 17127-17148.
|
| [33] |
Pieters C. M., Shkuratov Y. G., Kaydash V. G., . Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 2006, 184(1): 83-101.
|
| [34] |
Pieters C. M., Stankevich D. G., Shkuratov Y. G., . Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus, 2002, 155: 285-298.
|
| [35] |
Riner, M. A., Robinson, M. S., Tangeman, J. A., et al., 2005. Is Ilmenite always the Dominant Carrier of Titanium in Lunar Mare Basalts? In: Proceedings of 36th Lunar and Planetary Science Conference. Huston, United States
|
| [36] |
Shkuratov Y. G., Kaydash V. G., Opanasenko N. V.. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 1999, 137(2): 222-234.
|
| [37] |
Shkuratov Y. G., Kaydash V. G., Pieters C. M.. Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition. Solar Sys. Res., 2005, 39(4): 255-266.
|
| [38] |
Shkuratov Y. G., Kaydash V. G., Stankevich D. G., . Derivation of Elemental Abundance Maps at Intermediate Resolution from Optical Interpolation of Lunar Prospector Gamma-Ray Spectrometer Data. Planet. Space Sci., 2005, 53(12): 1287-1301.
|
| [39] |
Shkuratov, Y. G., Pieters, C. M., Omelchenko, V. V., et al., 2003a. Estimates of the Lunar Surface Composition with Clementine Images and LSCC Data. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States
|
| [40] |
Shkuratov Y. G., Stankevich D. G., Kaydash V. G., . Composition of the Lunar Surface as will be Seen from SMART-1: A Simulation Using Clementine Data. J. Geophys. Res., 2003, 108 E4 5020
|
| [41] |
Taylor, L. A., Morris, R. V., Keller, L. P., et al., 2000b. Major Contributions to Spectral Reflectance Opacity by Non-Agglutinitic, Surface-Correlated Nanophase Iron. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States
|
| [42] |
Taylor, L. A., Morris, R. V., Pieters, C. M., et al., 2000a. Chemical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States
|
| [43] |
Taylor, L. A., Patchen, A., Taylor, D. S., et al., 2000c. Mineralogical Characterization of Lunar Mare Soils. In: Proceedings of 31st Lunar and Planetary Science Conference. Huston, United States
|
| [44] |
Taylor L. A., Pieters C. M., Keller L. P., . Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. J. Geophys. Res., 2001, 106(E11): 27985-27999.
|
| [45] |
Taylor, L. A., Pieters, C. M., Morris, R. V., et al., 1999. Integration of the Chemical and Mineralogical Characteristics of Lunar Soils with Reflectance Spectroscopy. In: Proceedings of 30th Lunar and Planetary Science Conference. Huston, United States
|
| [46] |
Taylor, L. A., Pieters, C. M., Patchen, A., et al., 2003. Mineralogical Characterization of Lunar Highland Soils. In: Proceedings of 34th Lunar and Planetary Science Conference. Huston, United States
|
| [47] |
Williams D. A., Greeley R., Neukum G., . Multispectral Studies of Western Limb and Farside Maria from Galileo Earth-Moon Encounter-1. J. Geophys. Res., 1995, 100(E11): 23291-23299.
|
| [48] |
Wold H.. David F.. Nonlinear Estimation by Iterative Least Squares Procedure. Research Papers in Statistics, 1966, New York: Wiley & Sons 441 444
|
| [49] |
Wold H.. Krishnaiah P. R.. Estimation of Principal Components and Related Models by Iterative Least Squares. Multivariate Analysis, 1966, New York: Academic Press 391 420
|