Chemical characteristics of snow-firn pack in altai mountains and its environmental significance

Feiteng Wang , Lin Wang , Jian Kang , Futang Kou

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (4) : 482 -489.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (4) : 482 -489. DOI: 10.1007/s12583-011-0202-9
Article

Chemical characteristics of snow-firn pack in altai mountains and its environmental significance

Author information +
History +
PDF

Abstract

In order to study the chemical characteristics of snow-firn pack in Altai Mountains and its environmental significance, a 1.5-m deep snow-firn pack was dug in the accumulation zone (3 300 m a.s.l.) of the Kanas Glacier in August 2009. A total of 15 samples were analyzed for major ions. Results show that the concentrations of major ions in the snow-firn pack are NH4 +>SO4 2−>Ca2+>NO3 >Na+>Cl>K+>Mg2+. NH4 + is the dominant cation with a medium value of 4.7 ueq·L−1, accounting for 39.8% of the total cations, and SO4 2− is the dominant anion, with a medium value of 4.0 ueq·L−1, which accounts for 33.9% of the total cations. Compared with Belukha Glacier (Altai), Urumqi Glacier No. 1, and the Inilchek Glacier (Tienshan), there is a lower ion concentrations in the Kanas snow-firn pack. Potential sources of these chemical species are explored using correlation and empirical orthogonal function (EOF) analyses. The analyses indicate that major ion concentrations (except NH4 +) originate from crustal dust. Backward trajectory analysis was applied to get the origin of the air mass to Kanas Glacier. The results suggest that air pollutants emitted by forest fires in Siberia could be transported and influence the NH4 +, NO3 , and SO4 2− concentrations on the Kanas Glacier.

Keywords

Kanas Glacier / snow-firn chemistry / Altai Mountains / backward trajectory / forest fires

Cite this article

Download citation ▾
Feiteng Wang, Lin Wang, Jian Kang, Futang Kou. Chemical characteristics of snow-firn pack in altai mountains and its environmental significance. Journal of Earth Science, 2011, 22(4): 482-489 DOI:10.1007/s12583-011-0202-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aizen V. B., Aizen E. M., Melack J. M., . Association between Atmospheric Circulation Patterns and Firn-Ice Core Records from the Inilchek Glacierized Area, Central Tien Shan, Asia. Journal of Geophysical Research, 2004, 109 D8 D08304

[2]

Andreae M. O., Merlet P.. Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles, 2001, 15(4): 955-966.

[3]

Crutzen P. J., Heidt L. E., Krasnec J. P., . Biomass Burning as a Source of gases CO, H2, N2O, NO, CH3Cl, and COS. Nature, 1979, 282(5736): 253-256.

[4]

Davis, R. E., 1991. Links between Snowpack Chemistry and Snowpacks Physics. In: Davies, T. D., Jones, H. G., Tranter, M., eds., Processes of Chemical Change in Snowpacks. NATO ASI Ser., 28: 115–138

[5]

Doscher A., Gaggeler H. W., Schotterer U., . A Historical Record of Ammonium Concentrations from a Glacier in the Alps. Geophysical Research Letters, 1996, 23(20): 2741-2744.

[6]

Falkovich A. H., Ganor E., Levin Z., . Chemical and Mineralogical Analysis of Individual Mineral Dust Particles. Journal of Geophysical Research, 2001, 106(D16): 18029-18036.

[7]

Hontoria C., Saa A., Almorox J., . The Chemical Composition of Precipitation in Madrid. Water, Air, & Soil Pollution, 2003, 146(1–4): 35-54.

[8]

Hou S. G., Qin D. H., Ren J. W., . The Present Environmental Process of the pH and Conductivity Records in the Glacier No. 1 at the Headwaters of Urumqi River, Tianshan Mountains. Journal of Glaciology and Geocryology, 1999, 21(3): 225-232.

[9]

Hou S. G., Qin D. H., Zhang D. Q., . A 154a High-Resolution Ammonium Record from the Rongbuk Glacier, North Slope of Mt. Qomolangma (Everest), Tibet-Himal Region. Atmospheric Environment, 2003, 37(5): 721-729.

[10]

Kahl J. D. W., Martinez D. A., Kuhns H., . Air Mass Trajectories to Summit, Greenland: A 44-Year Climatology and Some Episodic Events. Journal of Geophysical Research, 1997, 102(C12): 26861-26875.

[11]

Kang, S. C., Mayewski, P. A., Qin, D. H., et al., 2002. Twentieth Century Increase of Atmospheric Ammonia Recorded in Mt. Everest Ice Core. Journal of Geophysical Research, 107(4595), doi:10.1029/2001JD001413

[12]

Kreutz K. J., Aizen V. B., Cecil L. D., . Oxygen Isotopic and Soluble Ionic Composition of a Shallow Firn Core, Inilchek Glacier, Central Tien Shan. Journal of Glaciology, 2001, 47(159): 548-554.

[13]

Li Z. Q., Edwards R., Thompson E. M., . Seasonal Variability of Ionic Concentrations in Surface Snow and Elution Processes in Snow-Firn Packs at the PGPI Site on Urumqi Glacier No. 1, Eastern Tian Shan, China. Annals of Glaciology, 2006, 43: 250-256.

[14]

Li Z. Q., Li C. J., Li Y. F., . Preliminary Results from Measurements of Selected Trace Metals in the Snow-Firn Pack on Urumqi Glacier No. 1, Eastern Tian Shan, China. Journal of Glaciolog, 2007, 53(182): 368-373.

[15]

Li Z. Q., Wang W. B., Wang F. T., . Characteristics of Ionic Concentration and Delta O-18 and Their Variability in Dry-Season and Wet-Season Snow on Urumqi Glacier No. 1, Eastern Tien Shan, Central Asia. Annals of Glaciology, 2008, 49: 217-223.

[16]

Meeker, L. D., Mayewski, P. A., Bloomfield, P., 1995. A New Approach to Glaciochemical Time Series Analysis. In: Delmas, R. J., ed., Ice Core Studies of Biogeochemical Cycles. NATO ASI Series, 30: 383–400

[17]

Olivier, S., Schwikowski, M., Brutsch, S., et al., 2003. Glaciochemical Investigation of an Ice Core from Belukha Glacier, Siberian Altai. Geophysical Research Letters, 30(2019), doi:10.1029/2003GL018290

[18]

Preunkert S., Legrand M., Wagenbach D.. Sulfate Trends in a Col du Dome (French Alps) Ice Core: A Record of Anthropogenic Sulfate Levels in the European Midtroposphere over the Twentieth Century. Journal of Geophysical Research, 2001, 106(D23): 31991-32004.

[19]

Ramachandran S.. PM2.5 Mass Concentrations in Comparison with Aerosol Optical Depths over the Arabian Sea and Indian Ocean during Winter Monsoon. Atmospheric Environment, 2005, 39(10): 1879-1890.

[20]

Schwikowski M., Doscher A., Gaggeler H. W., . Anthropogenic versus Natural Sources of Atmospheric Sulphate from an Alpine Ice Core. Tellus, 1999, 51(5): 938-951.

[21]

Wagenbach, D., 1989. Environmental Records in Alpine Glaciers. In: Oeschger, H., Jr. Langway, C. C., eds., Environmental Record in Glaciers and Ice Sheets. Physical, Chemical, and Earth Sciences Research Reports, 8: 69–83

[22]

Wake C. P., Mayewski P. A., Li Z. Q., . Modern Eolian Dust Deposition in Central Asia. Tellus, 1994, 46(3): 220-233.

[23]

Wang F. T., Li Z. Q., You X. N., . Seasonal Evolution of Aerosol Stratigraphy in Urumqi Glacier No. 1 Percolation Zone, Eastern Tian Shan, China. Annals of Glaciology, 2006, 43: 245-249.

[24]

Wang L. L., Liu C. H., Kang X. C., . Fundamental Features of Modern Glaciers in the Altay Shan of China. Journal of Glaciology and Geocryology, 1983, 5(4): 27-38.

[25]

Zhao Z. P., Li Z. Q.. Determination of Soluble Ions in Atmospheric Aerosol by Ion Chromatography. Modern Scientific Instruments, 2004, 5: 46-49.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/