PDF
Abstract
The aim of the present work is to investigate the distribution of arsenic (As) in sewage irrigation area, to deduce the migration and transformation mechanism of As in soil and groundwater, and to infer the source of As in soil and groundwater. This study is carried out in a sewage irrigation area of the Pearl River Delta, China. Surface water samples, soil samples, and groundwater samples from sewage irrigation area were analyzed for As and other elements. As contents in water samples were analyzed by hydride generation-atomic fluorescence spectroscopy, and As fractionation in soil samples was extracted using a seven-step sequential extraction method according to a seven fraction scheme: water soluble, ion exchangeable, bound to carbonate, weakly bound to organic matter, associated with oxides of iron (Fe) and manganese (Mn), strongly bound to organic matter, and the residual fraction. Waste water has content of As up to 16.8 μg/L in the study area. Soil has enriched As due to the irrigation of soil with waste water, and the total content of As in soil is about 0.7 times higher than the background value. Sequential extraction method reveals that the mean content of residual fraction in soil is more than 70%, releasable fraction (weakly organic fraction, Fe-Mn oxide fraction, and carbonate fraction) is about 20%–30%, whereas strongly organic and mobile fractions (water soluble and ion exchangeable) are within 0.2%. In the soil profile, the contents of water soluble, ion exchangeable, and carbonate fraction decrease with the depth, whereas the contents of other fractions are irregular with the depth. Using correlation analysis, it is concluded that water soluble fraction is easy to change into ion exchangeable and carbonate fraction, ion exchangeable fraction is easy to change into carbonate and Fe-Mn oxide fraction, and carbonate fraction is easy to change into weakly organic and Fe-Mn oxide fraction in the soil of study area. Organic matter and (hydr)oxides of Fe and aluminium (Al) in soil play an important role in controlling the distribution and mobility of As in soil. As concentrations in groundwater range from 2.8 to 21.0 μg/L, and it is inferred that As from waste water and the release of high As sediment (soil and aquifer medium) are the main sources for high As groundwater in study area. Using cluster analysis, it is concluded that reducing groundwater with slightly alkaline is beneficial to enrichment of As in groundwater, and hydroxides of Fe, Mn, and Al also play a key role for the enrichment of As in groundwater of the study area.
Keywords
arsenic
/
sewage irrigation area
/
soil
/
groundwater
/
fraction
Cite this article
Download citation ▾
Guanxing Huang, Jichao Sun, Ying Zhang, Jihong Jing, Yuxi Zhang, Jingtao Liu.
Distribution of arsenic in sewage irrigation area of Pearl River Delta, China.
Journal of Earth Science, 2011, 22(3): 396-410 DOI:10.1007/s12583-011-0192-7
| [1] |
Ahmed K. M., Bhattacharya P., Hasan M. A., . Arsenic Enrichment in Groundwater of the Alluvial Aquifers in Bangladesh: An Overview. Applied Geochemistry, 2004, 19(2): 181-200.
|
| [2] |
Anawar H. M., Akai J., Komaki K., . Geochemical Occurrence of Arsenic in Groundwater of Bangladesh: Sources and Mobilization Processes. J. Geochem. Explor., 2003, 77(2–3): 109-131.
|
| [3] |
Anawar H. M., Akai J., Mostofa K. M. G., . Arsenic Poisoning in Groundwater Health Risk and Geochemical Sources in Bangladesh. Environment International, 2002, 27(7): 597-604.
|
| [4] |
Appleyard S. J., Angeloni J., Watkins R.. Arsenic-Rich Ground Water in an Urban Area Experiencing Drought and Increasing Population Density, Perth, Australia. Applied Geochemistry, 2006, 21(1): 83-97.
|
| [5] |
Arunachalam J., Emons H., Krasnodebska B., . Sequence Extraction Studies on Homogenized Forest Soil Samples. Science of the Total Environment, 1996, 181(2): 147-159.
|
| [6] |
Berg M., Stengel C., Trang P. T. K., . Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 2007, 372(2–3): 413-425.
|
| [7] |
Busbee M. W., Kocar B. D., Benner S. G.. Irrigation Produces Elevated Arsenic in the Underlying Groundwater of a Semi-Arid Basin in Southwestern Idaho. Applied Geochemistry, 2009, 24(5): 843-859.
|
| [8] |
Chai S. W., Wen Y. M., Zhang Y. N., . The Heavy Metal Content Character of Agricultural Soil in Guangzhou Suburbs. China Environmental Science, 2003, 23(6): 592-596.
|
| [9] |
Chai S. W., Wen Y. M., Wei X. G., . Heavy Metal Content Characteristics of Agricultural Soils in the Pearl River Delta. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(4): 90-94.
|
| [10] |
Chakraborti D., Sengupta M. K., Rahman M. M., . Groundwater Arsenic Contamination and Its Health Effects in the Ganga-Meghna-Brahmaputra Plain. J. Environ. Monit., 2004, 6(6): 74N-83N.
|
| [11] |
Chen P. H.. The Partition for the Quaternary Stratum of the Pearl River Delta. Renmin Zhujiang, 1987, 6: 16-24.
|
| [12] |
Chiu V. Q., Hering J. G.. Arsenic Adsorption and Oxidation at Manganite Surfaces. 1. Method for Simultaneous Determination of Adsorbed and Dissolved Arsenic Species. Environ. Sci. Technol., 2000, 34(10): 2029-2034.
|
| [13] |
Chowdhury T. R., Basu G. K., Mandal B. K., . Arsenic Poisoning in the Ganges Delta. Nature, 1999, 401(6753): 545-546.
|
| [14] |
Dixit S., Hering J. G.. Comparison of Arsenic (V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environ. Sci. Technol., 2003, 37(18): 4182-4189.
|
| [15] |
Gee G. W., Bauder J. W.. Klute A.. Particle-Size Analysis. Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, 1986, Madison, WI: American Society of Agronomy
|
| [16] |
Goh K. H., Lim T. T.. Geochemistry of Inorganic Arsenic and Selenium in a Tropical Soil: Effect of Reaction Time, pH, and Competitive Anions on Arsenic and Selenium Adsorption. Chemosphere, 2004, 55(6): 849-859.
|
| [17] |
Grafe M., Eick M. J., Grossel P. R.. Adsorption of Arsenate(V) and Arsenite(III) on Goethite in the Presence and Absence of Dissolved Organic Carbon. Soil Sci. Soc. Am. J., 2001, 65(6): 1680-1687.
|
| [18] |
Guo H. M., Wang Y. X., Li Y. M.. Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin, Shanxi Province. Environmental Science, 2003, 24(4): 60-67.
|
| [19] |
Harvey C. F., Swartz C. H., Badruzzaman A. B. M., . Arsenic Mobility and Groundwater Extraction in Bangladesh. Science, 2002, 298(5598): 1602-1606.
|
| [20] |
Janoš P., Herzogová L., Rejnek J., . Assessment of Heavy Metals Leachability from Metallo-Organic Sorbent—Iron Humate—With the Aid of Sequential Extraction Test. Talanta, 2004, 62(3): 497-501.
|
| [21] |
Jiang W., Zhang S. Z., Shan X. Q., . Adsorption of Arsenate on Soils—Part 2: Modeling the Relationship between Adsorption Capacity and Soil Physiochemical Properties Using 16 Chinese Soils. Environmental Pollution, 2005, 138(2): 285-289.
|
| [22] |
Kabata-Pendias A., Pendias H.. Trace Elements in Soils and Plants, 1984, Boca Raton: CRC Press
|
| [23] |
Korte N. E., Fernando Q.. A Review of Arsenic (III) in Groundwater. Crit. Rev. Environ. Control, 1991, 21(1): 1-39.
|
| [24] |
Krishna M., Chandrasekaran K., Karunasagar D., . A Combined Treatment Approach Using Fenton’s Reagent and Zero Valent Iron for the Removal of Arsenic from Drinking Water. Journal of Hazardous Materials, 2001, 84(2–3): 229-240.
|
| [25] |
Li J. L., He M., Sun S. Q., . Effect of the Behavior and Availability of Heavy Metals on the Characteristics of the Coastal Soils Developed from Alluvial Deposits. Environmental Monitoring and Assessment, 2009, 156(1–4): 91-98.
|
| [26] |
Mckeague J. A., Day J. H.. Dithionite and Oxalate-Extractable Fe and Al as Aids in Differentiating Various Classes of Soils. Canadian J. Soil Sci., 1966, 46: 13-22.
|
| [27] |
Mo Z., Wang C. X., Chen Q., . Form Distribution and Transformation of Heavy Metals of Cu, Pb, Zn, Cr and Cd in Soils. Agro-environmental Protection, 2002, 21(1): 9-12.
|
| [28] |
Naidu R., Smith E., Huq S. M. I., . Sorption and Bioavailability of Arsenic in Selected Bangladesh Soils. Environmental Geochemistry and Health, 2009, 31: 61-68.
|
| [29] |
Navarro A. F., Cegarra J., Roig A., . An Automatic Microanalysis Method for the Determination of Organic Carbon in Wastes. Communications in Soil Science and Plant Analysis, 1991, 22(19–20): 2137-2144.
|
| [30] |
Nickson R. T., McArthur J., Burgess W., . Arsenic Poisoning of Bangladesh Groundwater. Nature, 1998, 395(6700): 338-338.
|
| [31] |
Nickson R. T., McArthur J. M., Ravenscroft P., . Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 2000, 15(4): 403-413.
|
| [32] |
Norra S., Berner Z. A., Agarwala P., . Impact of Irrigation with As Rich Ground Water on Soil and Crops: A Geochemical Case Study in West Bengal Delta Plain, India. Applied Geochemistry, 2005, 20(10): 1890-1906.
|
| [33] |
Ouyang, T. P., Kuang, Y. Q., Tan, J. J., et al., 2004. Spatial Distribution of Trace Element in Rivers in the Pearl River Delta Economic Zone. Hydrogeology and Engineering Geology, (4): 66–69 (in Chinese with English Abstract)
|
| [34] |
Park J. M., Lee J. S., Lee J. U., . Microbial Effects on Geochemical Behavior of Arsenic in As-Contaminated Sediments. J. Geochem. Explor., 2006, 88(1–3): 134-138.
|
| [35] |
Polizzotto M. L., Kocar B. D., Benner S. G., . Near Surface Wetland Sediments as a Source of Arsenic Release to Ground Water in Asia. Nature, 2008, 454(7203): 505-508.
|
| [36] |
Rowland H. A. L., Polya D. A., Lloyd J. R., . Characterisation of Organic Matter in a Shallow, Reducing, Arsenic-Rich Aquifer, West Bengal. Organic Geochemistry, 2006, 37(9): 1101-1114.
|
| [37] |
Schreiber M. E., Gotkowitz M. B., Simo J. A., . Welch A. H., Stollenwerk K. G., . Mechanism of Arsenic Release to Ground Water from Naturally Occurring Sources, Eastern Wisconsin. Arsenic in Ground Water, 2003, Boston: Kluwer Academic Publishers
|
| [38] |
Seyler P., Martin J. M.. Biogeochemical Processes Affecting Arsenic Species Distribution in a Permanently Stratified Lake. Environ. Sci. Technol., 1989, 23(10): 1258-1263.
|
| [39] |
Singh A. K., Hasnain S. I., Benerjee D. K.. Grain Size and Geochemical Partitioning of Heavy Metals in Sediments of the Damodar River—A Tributary of the Lower Ganga, India. Environmental Geology, 1999, 39(1): 90-98.
|
| [40] |
Smedley P. I., Kinniburgh D. G.. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 2002, 17(5): 517-568.
|
| [41] |
Smedley P. L., Nicolli H. B., Macdonald D. M. J., . Hydrogeochemistry of Arsenic and Other Inorganic Constituents in Groundwaters from La Pampa, Argentina. Applied Geochemistry, 2002, 17(3): 259-284.
|
| [42] |
Smith A. H., Hopenhayn-Rich C., Bates M. N., . Cancer Risks from Arsenic in Drinking Water. Environ. Health Perspect., 1992, 97: 259-267.
|
| [43] |
Smith A. H., Lingas E. O., Rahman M.. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull. WHO, 2000, 78(9): 1093-1103.
|
| [44] |
Smith E., Naidu R., Alston A. M.. Arsenic in the Soil Environment: A Review. Advance in Agronomy, 1998, 64: 149-195.
|
| [45] |
Sracek O., Bhattacharya P., Jacks G., . Behavior of Aarsenic and Geochemical Modeling of Arsenic Enrichment in Aqueous Environments. Applied Geochemistry, 2004, 19(2): 169-180.
|
| [46] |
Stollenwerk K. G., Breit G. N., Welch A. H., . Arsenic Attenuation by Oxidized Aquifer Sediments in Bangladesh. Science of the Total Environment, 2007, 379(2–3): 133-150.
|
| [47] |
Stüben D., Berner Z., Chandrasekharam D., . Arsenic Enrichment in Groundwater of West Bengal, India: Geochemical Evidence for Mobilization of As under Reducing Conditions. Applied Geochemistry, 2003, 18(9): 1417-1434.
|
| [48] |
Sun, J. C., Jing, J. H., Liu, J. T., et al., 2007. Report on the Investigation and Assessment of Groundwater Contamination in Pearl River Delta Area. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang (in Chinese)
|
| [49] |
Tang L. S., Liao H. R., Liao Z. Q., . The Geological Environment Zoning and Character in the Pearl River Delta. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(Suppl.): 229-233.
|
| [50] |
Terminal of Environmental Monitoring of China Background Value of Soil Element in China, 1990, Beijing: China Environmental Science Press 501
|
| [51] |
Tessier A., Campbell P. G. C., Bisson M.. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 1979, 51(7): 844-851.
|
| [52] |
Tondel M., Rahman M., Magnuson A., . The Relationship of Arsenic Levels in Drinking Water and the Prevalence Rate of Skin Lesions in Bangladesh. Environ. Health Perspect., 1999, 107(9): 727-729.
|
| [53] |
Ure A. M., Quevauviller P., Muntau H., . Speciation of Heavy Metals in Soils and Sediments—An Account of the Improvement and Harmonization of Extraction Techniques Undertaken under the Auspices of the BCR of the Commission-of-the-European-Communities. Int. J. Environ. Anal. Chem., 1993, 51(1–4): 135-151.
|
| [54] |
Varsányi I., Fodré Z., Bartha A.. Arsenic in Drinking Water and Mortality in the Southern Great Plain, Hungary. Environmental Geochemistry and Health, 1991, 13(1): 14-22.
|
| [55] |
Vodyanitskii Y. N.. Chromium and Arsenic in Contaminated Soils. Eurasian Soil Science, 2009, 42(5): 507-515.
|
| [56] |
Wang S. W., Liu C. W., Jang C. S.. Factors Responsible for High Arsenic Concentrations in Two Groundwater Catchments in Taiwan. Applied Geochemistry, 2007, 22(2): 460-476.
|
| [57] |
Wei X. G., He J. H., Wang S. Y., . Investigation and Evaluation on Heavy Metal Pollution of Vegetable Farm Soils in Guangzhou. Soil and Environmental Science, 2002, 11(3): 252-254.
|
| [58] |
Welch A. H., Lico M. S.. Factors Controlling As and U in Shallow Ground Water, Southern Carson Desert, Nevada. Applied Geochemistry, 1998, 13(4): 521-539.
|
| [59] |
World Health Organization Arsenic Environmental Health Criteria 18, 1981, Geneva: International Program on Chemical Safety
|
| [60] |
World Health Organization (WHO), 2004. Guidelines for Drinking Water Quality (Third Edition). Geneva
|
| [61] |
Xie X. J., Wang Y. X., Duan M. Y., . Geochemical and Environmental Magnetic Characteristics of High Arsenic Aquifer Sediments from Datong Basin, Northern China. Environmental Geology, 2009, 58(1): 45-52.
|
| [62] |
Yang J., Zheng Y. M., Chen T. B., . Leaching of Heavy Metals in Soil Column under Irrigation Reclaimed Water: A Simulation Experiment. Geographical Research, 2006, 25(3): 449-456.
|