Formation mechanism of high quality marine source rocks—Coupled control mechanism of geological environment and organism evolution

Tenger , Kai Hu , Qingqiang Meng , Juan Huang , Xiaodong Fu , Xiaomin Xie , Yunfeng Yang , Changlin Gao

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (3) : 326

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (3) : 326 DOI: 10.1007/s12583-011-0185-6
Article

Formation mechanism of high quality marine source rocks—Coupled control mechanism of geological environment and organism evolution

Author information +
History +
PDF

Abstract

High quality marine source rock (HQMSR) is the key prerequisite for medium to large hydrocarbon accumulations. However, the forming mechanism remains unclear. On the basis of the investigation for the geodynamic setting of the Middle-Upper Yangtze during the Early Cambrian in different spatial scales and the analysis of trace elements, the main controlling factors of the development of high quality marine source rock are discussed, with specific consideration of the burial rate of the organic matter. The formation of high quality marine source rocks is suggested to be the result of a coordinated development and the interaction between geological environments and organism evolution during the major geological transition periods. We perceived that the burial rate of organic matter was influenced by the primary productivity and its burial conditions. The abundance of autogenetic molybdenum gained directly by the chemical speciation analysis of rocks could be used as a proxy for the burial organic matter. The burial rate of autogenetic molybdenum and the sedimentary organics in modern marine environments could be used to estimate the sedimentary organics in ancient environments effectively.

Keywords

high quality marine source rock / forming mechanism / geodynamics / geological environment / organic evolution / speciation analysis

Cite this article

Download citation ▾
Tenger, Kai Hu, Qingqiang Meng, Juan Huang, Xiaodong Fu, Xiaomin Xie, Yunfeng Yang, Changlin Gao. Formation mechanism of high quality marine source rocks—Coupled control mechanism of geological environment and organism evolution. Journal of Earth Science, 2011, 22(3): 326 DOI:10.1007/s12583-011-0185-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bian L. Z., Zhang S. C., Liang D. G., . Fruit-Like Fossils of Ancient Seaweeds from Late Ordovician, Central Area of the Tarim Basin and the Characteristics of Bioprecursors of Tazhong Oil and Gas Field. Acta Micropalaeontologica Sinica, 2003, 20(1): 89-96.

[2]

Bralower T. J., Thierstein H. R.. Low Productivity and Slow Deepwater Circulation in Mid-Cretaceous. Geology, 1984, 12(10): 614-618.

[3]

Cai J. G., Bao Y. J., Yang S. Y., . Research on Preservation and Enrichment Mechanisms of Organic Matter in Muddy Sediment and Mudstone. Science in China (Series D), 2007, 37(2): 234-243.

[4]

Chen D. F., Chen G. Q., Chen X. P.. Sea-Level Changes and Hydrothermal Sedimentary Mineralization of Large-Superlarge Ore Deposits among Sinian to Triassic in South China. Science in China (Series D), 2003, 32(S2): 120-126.

[5]

Cheng J. F., Zhang S. C., Sun S. L., . Main Factors Influencing Marine Carbonate Source Rock Formation. Acta Geologica Sinica, 2006, 80(3): 467-472.

[6]

Chester R.. Marine Geochemistry, 2003 2nd ed. London: Blackwell Publishing 373 378

[7]

Creaney S., Passey Q. R.. Recurring Patterns of Total Organic Carbon and Source Rock Quality within a Sequence Stratigraphic Framework. AAPG Bulletin, 1993, 77: 386-401.

[8]

Dai J. X., Zou C. N., Tao S. Z., . Formation Conditions and Main Controlling Factors of Large Gas Fields in China. Natural Gas Geoscience, 2007, 18(4): 473-484.

[9]

Demaison G. J., Moore G. T.. Anoxic Environments and Oil Source Bed Genesis. AAPG Bulletin, 1980, 64(8): 1179-1209.

[10]

Dymond J., Suess E., Lyle M.. Barium in Deep-Sea Sediment: A Geochemical Proxy for Palaeoproductivity. Palaeoceanography, 1992, 7(2): 163-181.

[11]

Galimov Э. M. M.. Global Variation Characteristics of Carbon Isotopic Composition of the Biosphere. Natural Gas Geoscience, 1999, 13(1): 1-17.

[12]

Gao C. L., Huang Z. G., Ye D. Y., . Three Palaeo-Oceans in the Early Palaeozoic and Their Control to Basins in China. Petroleum Geology & Experiment, 2005, 27(5): 439-448.

[13]

Hoffman P. F.. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?. Science, 1991, 252(5011): 1409-1412.

[14]

Hoffman P. F., Kaufman A. J., Halverson G. P., . A Neoproterozoic Snowball Earth. Science, 1998, 281(5381): 1342-1346.

[15]

Hou X. G., Bergstrom J., Wang H. F., . The Chengjiang Fauna-Exceptionally Well Preserved Animals from 530 Millions Years ago, 1999, Kunming: Yunnan Science and Technology Press 1 170

[16]

Ibach L. E. J.. Relationship between Sedimentation Rate and Total Organic Carbon Content in Ancient Marine Sediments. AAPG Bulletin, 1982, 66: 170-188.

[17]

Jiang Y. H., Yue W. Z., Ye Z. Z.. Anoxic Event, Black Shales and Related Mineral Resource: Taking the Lower Palaeozoic in Southern China as Example. Geological Exploration for Non-ferrous Metals, 1994, 3(5): 272-278.

[18]

Jin Z. J.. Particularity of Petroleum Exploration on Marine Carbonate Strata in China Sedimentary Basins. Earth Science Frontiers, 2005, 12(3): 15-22.

[19]

Knoll A. H., Carroll S. B.. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science, 1999, 284(5423): 2129-2137.

[20]

Li S. R., Gao Z. M.. REE Characteristics of Black Rock Series of the Lower Cambrian Niutitang Formation in Hunan and Guizhou Provinces, China, with a Discussion on the REE Patterns in Marine Hydrothermal Sediments. Acta Mineralogica Sinica, 1995, 15(2): 225-229.

[21]

Li S. R., Gao Z. M.. Source Tracing of Noble Metal Elements in Lower Cambrian Black Rock Series of Guizhou-Hunan Provinces, China. Science in China (Series D), 2000, 30(2): 169-174.

[22]

Liang D. G., Guo T. L., Chen J. P., . Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1): Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.

[23]

Liu B. J., Xu X. S., Pan X. N., . Crustal Evolution and Metallogenic System in the Southern China Palaeocontinent, 1993, Beijing: Science Press 9 134

[24]

B. Q., Wang H. G., Hu W. S., . Relationship between Palaeozoic Upwelling Facies and Hydrocarbon in Southeastern Marginal Yangtze Block. Marine Geology & Quaternary Geology, 2004, 24(4): 29-35.

[25]

Ma Y. S., Cai X. Y., Guo T. L.. The Controlling Factors of Oil and Gas Charging and Accumulation of Puguang Gas Field in the Sichuan Basin. Chinese Science Bulletin, 2007, 52(Suppl.1): 149-155.

[26]

Majone M., Massanisso P., Ramadori R.. Comparison of Carbon Storage under Aerobic and Anoxic Conditions. Water Science and Technology, 1998, 38(8–9): 77-84.

[27]

Marchig V., Gundlach H., Moller P., . Some Geochemical Indicators of Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 1982, 50(3): 241-256.

[28]

McManus J., Berelson W. M., Severmann S., . Molybdenum and Uranium Geochemistry in Continental Margin Sediments: Palaeoproxy Potential. Geochimica et Cosmochimica Acta, 2006, 70(18): 4643-4662.

[29]

Mongenot T., Tribovillard N. P., Desprairies A., . Trace Elements as Palaeoenvironmental Markers in Strongly Mature Hydrocarbon Source Rocks: The Cretaceous La Luna Formation of Venezuela. Sediment. Geol., 1996, 103(1–2): 23-27.

[30]

Moores E. M.. Southwest U.S.-East Antarctic (SWEAT) Connection: A Hypothesis. Geology, 1991, 19: 425-428.

[31]

Müller P. J., Suess E.. Productivity, Sedimentation Rate and Sedimentary Organic Matter in the Ocean: Organic Carbon Preservation. Deep-Sea Research, 1979, 26(12): 1347-1362.

[32]

Pan J. Y., Ma D. S., Xia F., . Study on Nickel and Molybdenum Minerals in Ni-Mo Sulfide Layer of the Lower Cambrian Black Rock Series, Northwestern Hunan. Acta Mineralogica Sinica, 2005, 25(3): 283-288.

[33]

Pedersen T. F., Calvert S. E.. Anoxia vs Productivity—What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks. AAPG Bulletin, 1990, 74: 454-466.

[34]

Rong J. Y.. Originations, Radiations and Biodiversity Changes—Evidence from Chinese Fossil Record, 2006, Beijing: Science Press 1 962

[35]

Stanley S. M.. An Ecological Theory for the Sudden Origin of Multicellular Life in the Late Precambrian. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(5): 1486-1489.

[36]

Tenger, Gao C. L., Hu K., . High Quality Source Rocks of Lower Combination in the Northern Upper-Yangtze Area and Their Hydrocarbon Potential. Natural Gas Geoscience, 2007, 18(2): 254-259.

[37]

Tenger, Hu C. L., Hu K., . High-Quality Source Rocks in the Lower Combination in Southeast Upper-Yangtze Area and Their Hydrocarbon Generating Potential. Petroleum Geology & Experiment, 2006, 28(4): 359-365.

[38]

Tenger, Liu W. H., Xu Y. C., . Organic Carbon Isotope Record in Marine Sediment and Its Environmental Significance—An Example from Ordos Basin, NW China. Petroleum Exploration and Development, 2004, 31(5): 11-16.

[39]

Tenger, Liu W. H., Xu Y. C., . Comprehensive Geochemical Identification of Highly Evolved Marine Carbonate Rocks as Hydrocarbon-Source Rocks as Exemplified by the Ordos Basin. Science in China (Series D), 2006, 49(4): 384-396.

[40]

Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence—A New Approach to Oil and Gas Exploration. Springer-Verlag Berlin Heidelberg, New York. 3-66

[41]

Ye L. J.. Biomineralization and Its Geologic Background, 1998, Beijing: Oceanological Publishing House 335 352

[42]

Zhang S. C., Zhang B. M., Bian L. Z., . Development Constraints of Marine Source Rocks in China. Earth Science Frontiers, 2005, 12(3): 39-48.

[43]

Zhang Y. C.. The Analysis of Oil-Gas-Bearing Basins in China, 1997, Nanjing: Nanjing University Press 1 450

[44]

Zheng Y., Anderson R. F., Geen A. V., . Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178.

[45]

Zhu X., Chen H. J., Shun Z. C., . The Mesozoic-Cenozoic Tectonics and Petroliferous Basins of China. Acta Geologica Sinica, 1983, 57(3): 235-242.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/