Lithospheric structure in the North China craton constrained from Gravity Field Model (EGM 2008)

Yuanyuan Li , Yushan Yang , Timothy M. Kusky

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 260 -272.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 260 -272. DOI: 10.1007/s12583-011-0179-4
Article

Lithospheric structure in the North China craton constrained from Gravity Field Model (EGM 2008)

Author information +
History +
PDF

Abstract

A detailed knowledge of the thickness of the lithosphere in the North China craton (NCC) is important for understanding the significant tectonic reactivation of the craton in Mesozoic and Cenozoic. We achieve this goal by applying the newly proposed continuous wavelet transform theory to the Gravity Field Model (EGM 2008) data in the region. Distinct structural variations are identified in the scalogram image of profile Alxa-Datong (大同)-Qingdao (青岛)-Yellow Sea (profile ABC), transversing the main units of NCC, which we interpret as mainly representing the Moho and lithosphere-asthenosphere boundary (LAB) undulations. The imaged LAB is as shallow as 60–70 km in the southeast basin and coastal areas and deepens to no more than 140 km in the northwest mountain ranges and continental interior. A rapid change of about 30 km in the LAB depth was detected at around the boundary between the Bohai (渤海) Bay basin (BBB) and the Taihang (太行) Mountains (TM), roughly coincident with the distinct gravity decrease of more than 100 mGal that marks the North-South Gravity Lineament (NSGL) in the region. At last we present the gravity modeling work based on the spectral analysis results, incorporating with the observations on high-resolution seismic images and surface topography. The observed structural differences between the eastern and western NCC are likely associated with different lithospheric tectonics across the NSGL. Combined with seismic tomography results and geochemical and petrological data, this suggests that complex modification of the lithosphere probably accompanied significant lithospheric thinning during the tectonic reactivation of the old craton.

Keywords

EGM 2008 geopotential model / continuous wavelet transform / Bouguer gravity anomaly / constrained gravity field modeling / North China craton (NCC)

Cite this article

Download citation ▾
Yuanyuan Li, Yushan Yang, Timothy M. Kusky. Lithospheric structure in the North China craton constrained from Gravity Field Model (EGM 2008). Journal of Earth Science, 2011, 22(2): 260-272 DOI:10.1007/s12583-011-0179-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blakely R. J., Simpson R. W.. Approximating Edges of Source Bodies from Magnetic or Gravity Anomalies. Geophysics, 1986, 51: 1494-1498.

[2]

Chen L.. Lithospheric Structure Variations between the Eastern and Central North China Craton from S- and P-Receiver Function Migration. Physics of the Earth and Planetary Interiors, 2009, 173: 216-227.

[3]

Chen, L., 2010. Concordant Structural Variations from the Surface to the Base of the Upper Mantle in the North China Craton and Its Tectonic Implications. Lithos, doi: 10.1016/J.Lithos.2009.12.007

[4]

Chen L., Ai Y. S.. Discontinuity Structure of the Mantle Transition Zone beneath the North China Craton from Receiver Function Migration. J. Geophys. Res., 2009, 114 B06307

[5]

Chen L., Zheng T., Xu W.. Receiver Function Migration Image of the Deep Structure in the Bohai Bay Basin, Eastern China. Geophysical Research Letters, 2006, 33 L20307

[6]

Christensen N. I., Stanley D.. Seismic Velocities and Densities of Rocks. International Geophysics, 2003, 81: 1587-1594.

[7]

Davis, G. A., Zheng, Y., Wang, C., et al., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. In: Hendrix, M. S., Davis, G. A., eds., Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia. Mem. Geol. Soc. Am., 194: 171–197

[8]

Deng J. F., Mo X. X., Zhao H. L., . A New Model for the Dynamic Evolution of Chinese Lithosphere: ‘Continental Roots-Plume Tectonics’. Earth-Science Reviews, 2004, 65: 223-275.

[9]

Fedi M.. DEXP: A Fast Method to Determine the Depth and the Structural Index of Potential Fields Sources. Geophysics, 2007, 72: I1-I11.

[10]

Forsberg R.. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Reports of the Department of Geodetic Science and Surveying, No. 355, 1984, Columbus, Ohio: Ohio State Univ.

[11]

Griffin, W. L., Zhang, A. D., O’Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In: Flower, M., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. Am. Geophys. Union Geodyn. Ser., 27: 107–126

[12]

Hornby P., Boschetti F., Horowitz F. G.. Analysis of Potential Field Data in the Wavelet Domain. Geophysical Journal International, 1999, 137: 175-196.

[13]

Hu S., He L., Wang J.. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 2000, 179: 407-419.

[14]

Huang J., Zhao D.. High-Resolution Mantle Tomography of China and Surrounding Regions. J. Geophys. Res., 2006, 111 B09305

[15]

Kennett B., Engdahl E. R.. Travel Times for Global Earthquake Location and Phase Identification. Geophys. J. Int., 1991, 105: 429-465.

[16]

Kusky T. M.. Comparison of Results of Recent Seismic Profiles with Tectonic Models of the North China Craton. Journal of Earth Science, 2011, 22(2): 250-259.

[17]

Kusky T. M., Li J. H.. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.

[18]

Kusky T. M., Li J. H.. Origin and Emplacement of Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(6): 910-922.

[19]

Kusky T. M., Li J. H., Tucker R. T.. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505 Billion Year Old Oceanic Crust and Mantle. Science, 2001, 292: 1142-1145.

[20]

Kusky, T. M., Santosh, M., 2009. The Columbia Connection in North China. In: Reddy, S. M., Mazumder, R., Evans, D., et al., eds., Paleoproterozoic Supercontinents and Global Evolution. Geological Society of London Special Publication, 323: 49–71

[21]

Kusky, T. M., Li, J. H., Santosh, M., 2007a. The Paleoproterozoic North Hebei Orogen: North China Craton’s Collisional Suture with Columbia Supercontinent. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 4-28. doi; 10.1016/J.Gr.2006.11.012

[22]

Kusky, T. M., Windley, B. F., Zhai, M. G., 2007b. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 1–34

[23]

Kusky, T. M., Windley, B. F., Zhai, M. G., 2007c. Lithospheric Thinning in Eastern Asia: Constraints, Evolution, and Tests of Models. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 331–343

[24]

Li C., van der Hilst R. D., Toksöz M. N.. Constraining P-Wave Velocity Variations in the Upper Mantle beneath Southeast Asia. Phys. Earth Planet. Inter., 2006, 154: 180-195.

[25]

Liu F., Wu H., Liu J., . 3-D Velocity Image beneath the Chinese Continent and Adjacent Regions. Geophys. J. Int., 1990, 101: 379-394.

[26]

Liu, M., Yang, Y., Shen, Z., et al., 2007. Active Tectonics and Intracontinental Earthquakes in China: The Kinematics and Geodynamics. In: Stein, S., Mazzotti, S., eds., Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America Special Paper, 425: 299–318

[27]

Mallat S.. A Wavelet Tour of Signal Processing, 1999, San Diego: Academic Press

[28]

Martelet G., Sailhac P., Moreau F., . Characterisation of Geological Boundaries Using 1-D Wavelet Transform on Gravity Data: Theory and Application to the Himalayas. Geophysics, 2001, 66: 1116-1129.

[29]

Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of N120 km of Archaean Lithosphere, Sino-Korean Craton, China. In: Prichard, H. M., Alabaster, T., Harris, N. B. W., et al., eds., Magmatic Processes and Plate Tectonics. Geol. Soc. Spel. Pub., 76: 71–78

[30]

Menzies, M. A., Xu, Y. G., 1998. Geodynamics of the North China Craton. In: Flower, M., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. American Geophysics Union Geodynamics Series, 27: 155–165

[31]

Menzies M., Xu Y., Zhang H., Fan W.. Integration of Geology, Geophysics and Geochemistry: A Key to Understanding the North China Craton. Lithos, 2007, 96: 1-21.

[32]

Moreau F., Gibert D., Holschneider M., . Wavelet Analysis of Potential Fields. Inverse Problems, 1997, 13: 165-178.

[33]

Moreau F., Gibert D., Holschneider M., . Identification of Sources of Potential Fields with the Continuous Wavelet Transform: Basic Theory. Journal of Geophysical Research, 1999, 104: 5003-5013.

[34]

Pavlis, N. K., Factor, J. K., Holmes, S. A., 2007. Terrain-Related Gravimetric Quantities Computed for the Next EGM. Proceedings of the 1st International Symposium of the International Gravity Field Service Vol. 18. Harita Dergisi, Istanbul. 318–323

[35]

Pavlis N. K., Holmes S. A., Kenyon S. C., . An Earth Gravitational Model to Degree 2 160: EGM 2008, 2008, Vienna: General Assembly of the European Geosciences Union

[36]

Qi C., Zhao D. P., Chen Y., . 3D P and S Wave Velocity Structures and Their Relationship to Strong Earthquakes in the Chinese Capital Region. Chin. J. Geophys., 2006, 49: 805-815.

[37]

Sailhac P., Galdeano A., Gibert D., . Identification of Sources of Potential Fields with the Continuous Wavelet Transform: Complex Wavelet and Application to Aeromagnetic Profiles in French Guiana. Journal of Geophysical Research, 2000, 155: 19455-19475.

[38]

Sun W., Ding X., Hu Y. H., . The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 2007, 262: 533-542.

[39]

Talwani M.. Computation with the Help of a Digital Computer of Magnetic Anomalies Caused by Bodies of Arbitrary Shape. Geophysics, 1965, 30: 797-817.

[40]

Talwani M., Heirtzler J. R.. Computation of Magnetic Anomalies Caused by Two-Dimensional Structures of Arbitrary Shape, 1964, Palo Alto, Calif: Stanford Univ. Press

[41]

Talwani M., Worzel J. L., Landisman M.. Rapid Gravity Computations for Two-Dimensional Bodies with Application to the Mendochino Submarine Fracture Zone. J. Geophys. Res., 1959, 64: 49-59.

[42]

Tapley B. D., Bettadpur S., Watkins M., . The Gravity Recovery and Climate Experiment: Mission Overview and Early Results. Geophysical Research Letters, 2004, 31 9 L09607

[43]

Tian Y., Zhao D. P., Sun R. M., . Seismic Imaging of the Crust and Upper Mantle beneath the North China Craton. Physics of the Earth and Planetary Interiors, 2009, 172: 169-182.

[44]

Won I. J., Bevis M.. Computing the Gravitational and Magnetic Anomalies due to a Polygon: Algorithms and Fortran Subroutines. Geophysics, 1987, 52: 232-238.

[45]

Wu F. Y., Walker R. J., Ren X. W., . Osmium Isotopic Constraints on the Age of Lithospheric Mantle beneath Northeastern China. Chemical Geology, 2003, 196: 107-129.

[46]

Wu F. Y., Xu Y. G., Gao S., . Controversial on Studies of the Lithospheric Thinning and Craton Destruction of North China. Acta Petrologica Sinica, 2008, 24: 1145-1174.

[47]

Xu Y. G.. Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxin’anling-Taihangshan Gravity Lineament. Lithos, 2007, 96: 281-298.

[48]

Yang Y. S., Li Y. Y., Liu T. Y.. Continuous Wavelet Transform, Theoretical Aspects and Application to Aeromagnetic Data at the Huanghua Depression, Dagang Oilfield, China. Geophysical Prospecting, 2010, 58: 669-684.

[49]

Yoo H. J., Herrmann R. B., Cho K. H., . Imaging the Three-Dimensional Crust of the Korean Peninsula by Joint Inversion of Surface-Wave Dispersion and Teleseismic Receiver Functions. Bull. Seismol. Soc. Am., 2007, 97: 1002-1011.

[50]

Zhang C. Y., Guo C. X., Chen J. Y., . EGM2008 and Its Application Analysis in Chinese Mainland. Acta Geodaetica et Cartographica Sinica, 2009, 38: 283-289.

[51]

Zhang S. H., Zhao Y., Song B., . Carboniferous Granitic Plutons from the Northern Margin of the North China Block: Implications for a Late Palaeozoic Active Continental Margin. Journal of the Geological Society, London, 2007, 164: 451-463.

[52]

Zhao G., Sun M., Wilde A., . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Res., 2005, 136: 177-202.

[53]

Zhao L., Allen R. M., Zheng T. Y., . Reactivation of an Archean Craton: Constraints from P- and S-Wave Tomography in North China. Geophysical Research Letters, 2009, 36 L17306

[54]

Zheng J. P., Griffin W. L., O’Reilly S. Y., . 3.6 Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 2004, 32: 229-233.

[55]

Zheng T. Y., Zhao L., Zhu R. X.. Insight into the Geodynamics of Cratonic Reactivation from Seismic Analysis of the Crust-Mantle Boundary. Geophys. Res. Lett., 2008, 35 L08303

[56]

Zheng T. Y., Zhao L., Zhu R. X.. New Evidence from Seismic Imaging for Subduction during Assembly of the North China Craton. Geology, 2009, 37: 395-398.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/