Layer-stripping full waveform inversion with damped seismic reflection data

Aifei Bian , Wenhui Yu

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 241 -249.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 241 -249. DOI: 10.1007/s12583-011-0177-6
Article

Layer-stripping full waveform inversion with damped seismic reflection data

Author information +
History +
PDF

Abstract

Full waveform inversion (FWI) directly minimizes errors between synthetic and observed data. For the surface acquisition geometry, reflections generated from deep reflectors are sensitive to overburden structure, so it is reasonable to update the macro velocity model in a top-to-bottom manner. For models dominated by horizontally layered structures, combination of offset/time weighting and constant update depth control (CUDC) is sufficient for layer-stripping FWI. CUDC requires ray tracing to determine reflection traveltimes at a constant depth. As model complexity increases, the multi-path effects will have to be considered. We developed a new layer-stripping FWI method utilizing damped seismic reflection data, which does not need CUDC and ray tracing. Numerical examples show that effective update depth (EUD) can be controlled by damping constants even in complex regions and the inversion result is more accurate than conventional methods.

Keywords

full waveform inversion / velocity model building / layer-stripping strategy / damped wave equation / sensitivity analysis

Cite this article

Download citation ▾
Aifei Bian, Wenhui Yu. Layer-stripping full waveform inversion with damped seismic reflection data. Journal of Earth Science, 2011, 22(2): 241-249 DOI:10.1007/s12583-011-0177-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amestoy P. R., Duff I. S., L’Excellent J. Y., . Analysis and Comparison of Two General Sparse Solvers for Distributed Memory Computers. ACM Transactions on Mathematical Software, 2001, 27(4): 388-421.

[2]

Bleibinhaus F., Lester R. W., Hole J. A.. Applying Waveform Inversion to Wide-Angle Seismic Surveys. Tectonophysics, 2009, 472(1–4): 238-248.

[3]

Boonyasiriwat C., Valasek P., Routh P., . An Efficient Multiscale Method for Time-Domain Waveform Tomography. Geophysics, 2009, 74(6): WCC59-WCC68.

[4]

Brenders A. J., Pratt R. G.. Full Waveform Tomography for Lithospheric Imaging: Results from a Blind Test in a Realistic Crustal Model. Geophysical Journal International, 2007, 168(1): 133-151.

[5]

Bube K. P., Langan R. T., Resnick J. R.. Theoretical and Numerical Issues in the Determination of Reflector Depths in Seismic Reflection Tomography. Journal of Geophysical Research, 1995, 100(B7): 12449-12458.

[6]

Bunks C., Saleck F. M., Zaleski S., . Multiscale Seismic Waveform Inversion. Geophysics, 1995, 60(5): 1457-1473.

[7]

Ding J. C., Chang X., Liu Y. K., . Layer by Layer Waveform Inversion of Seismic Reflection Data. Chinese J. Geophys., 2007, 50(2): 574-580.

[8]

Gauthier O., Virieux J., Tarantola A.. Two-Dimensional Nonlinear Inversion of Seismic Waveforms: Numerical Results. Geophysics, 1986, 51(7): 1387-1403.

[9]

Hustedt B., Operto S., Virieux J.. Mixed-Grid and Staggered-Grid Finite-Difference Methods for Frequency-Domain Acoustic Wave Modelling. Geophysical Journal International, 2004, 157(3): 1269-1296.

[10]

Kolb P., Collino F., Lailly P.. Pre-stack Inversion of a 1-D Medium. Proceedings of the IEEE, 1986, 74(3): 498-508.

[11]

Lailly P.. The Seismic Inverse Problem as a Sequence of before Stack Migrations. Conference on Inverse Scattering: Theory and Application, 1983, Philadelphia: SIAM 206 220

[12]

Lambaré G.. Stereotomography. Geophysics, 2008, 73(5): VE25-VE34.

[13]

Levander A. R.. Fourth-Order Finite-Difference P-SV Seismograms. Geophysics, 1988, 53(11): 1425-1436.

[14]

Luo Y., Schuster G.. Parsimonious Staggered Grid Finite-Differencing of the Wave Equation. Geophysical Research Letters, 1990, 17(2): 155-158.

[15]

Mallick S., Frazer N. L.. Practical Aspects of Reflectivity Modeling. Geophysics, 1987, 52(10): 1355-1364.

[16]

Mora P.. Nonlinear Two-Dimensional Elastic Inversion of Multioffset Seismic Data. Geophysics, 1987, 52(9): 1211-1228.

[17]

Pratt R. G.. Seismic Waveform Inversion in the Frequency Domain, Part 1: Theory and Verification in a Physical Scale Model. Geophysics, 1999, 64(3): 888-901.

[18]

Pratt R. G., Shin C., Hicks G. J.. Gauss-Newton and Full Newton Methods in Frequency-Space Seismic Waveform Inversion. Geophysical Journal International, 1998, 133(2): 341-362.

[19]

Pratt R. G., Worthington M. H.. Inverse Theory Applied to Multisource Cross-Hole Tomography, Part 1: Acoustic Wave-Equation Method. Geophysical Prospecting, 1990, 38(3): 287-310.

[20]

Shin C., Cha Y. H.. Waveform Inversion in the Laplace Domain. Geophysical Journal International, 2008, 173(3): 922-931.

[21]

Shin C., Cha Y. H.. Waveform Inversion in the Laplace-Fourier Domain. Geophysical Journal International, 2009, 177(3): 1067-1079.

[22]

Shipp R. M., Singh S. C.. Two-Dimensional Full Wavefield Inversion of Wide-Aperture Marine Seismic Streamer Data. Geophysical Journal International, 2002, 151(2): 325-344.

[23]

Sirgue L., Pratt R. G.. Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequencies. Geophysics, 2004, 69(1): 231-248.

[24]

Song Z. M., Williamson P. R., Pratt R. G.. Frequency-Domain Acoustic-Wave Modeling and Inversion of Crosshole Data: Part II—Inversion Method, Synthetic Experiments and Real-Data Results. Geophysics, 1995, 60(3): 796-809.

[25]

Tarantola A.. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 1984, 49(8): 1259-1266.

[26]

Tarantola A.. A Strategy for Nonlinear Elastic Inversion of Seismic Reflection Data. Geophysics, 1986, 51(10): 1893-1903.

[27]

Versteeg R.. The Marmousi Experience: Velocity Model Determination on a Synthetic Complex Data Set. The Leading Edge, 1994, 13: 927-936.

[28]

Virieux J., Operto S.. An Overview of Full-Waveform Inversion in Exploration Geophysics. Geophysics, 2009, 74(6): WCC1-WCC26.

[29]

Wang Y. H., Rao Y.. Reflection Seismic Waveform Tomography. Journal of Geophysical Research, 2009, 114 B03304

[30]

Williamson P. R.. A Guide to the Limits of Resolution Imposed by Scattering in Ray Tomography. Geophysics, 1991, 56(2): 202-207.

[31]

Williamson P. R., Worthington M. H.. Resolution Limits in Ray Tomography due to Wave Behavior: Numerical Experiments. Geophysics, 1993, 58(5): 727-735.

[32]

Woodward M. J.. Wave-Equation Tomography. Geophysics, 1992, 57(1): 15-26.

[33]

Wu R. S., Toksöz M. N.. Diffraction Tomography and Multisource Holography Applied to Seismic Imaging. Geophysics, 1987, 52(1): 11-25.

[34]

Xu K., Greenhalgh S.. Ore-Body Imaging by Crosswell Seismic Waveform Inversion: A Case Study from Kambalda, Western Australia. Journal of Applied Geophysics, 2010, 70(1): 38-45.

[35]

Xu S., Lambaré G.. Fast Migration/Inversion with Multivalued Rayfields: Part 1—Method, Validation Test, and Application in 2D to Marmousi. Geophysics, 2004, 69(5): 1311-1319.

[36]

Yoon, K., Shin, C., Marfurt, K. J., 2003. Waveform Inversion Using Time-Windowed Back Propagation. 73rd Annual International Meeting, SEG, Expanded Abstracts. SEG, Tulsa. 690–693

[37]

Zhou B., Greenhalgh S.. An Adaptive Wavenumber Sampling Strategy for 2.5D Seismic-Wave Modeling in the Frequency Domain. Pure and Applied Geophysics, 2006, 163(7): 1399-1416.

[38]

Zhou H. W.. Multiscale Deformable-Layer Tomography. Geophysics, 2006, 71(3): R11-R19.

[39]

Zhu X. H., Valasek P., Roy B., . Recent Applications of Turning-Ray Tomography. Geophysics, 2008, 73(5): VE243-VE254.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/