Influence of uneven trace spacing on Rayleigh wave dispersion

Shuangxi Zhang , Mengkui Li

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 231 -240.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 231 -240. DOI: 10.1007/s12583-011-0176-7
Article

Influence of uneven trace spacing on Rayleigh wave dispersion

Author information +
History +
PDF

Abstract

Rayleigh wave dispersion signals are significant to underground investigation. Traditionally, uniformed trace spacing is employed in surface wave surveys. In some cases, however, uneven trace spacing is often encountered because of the limitations of the site condition. In order to study the influence of uneven trace spacing on the dispersion data construction of Rayleigh waves, data acquisition is performed based on a 2.5D field layout with a linear array of geophones fixed and a mobile source. The observation direction controls the trace spacing of the measurement. The final results demonstrate that the trace nonuniformity has significant influence on the Rayleigh wave dispersion feature constructed. When the observation angle is over 45°, the dispersion image will be too distorted to extract dispersion data correctly.

Keywords

Rayleigh wave / uneven trace spacing / 2.5D data acquisition layout / observation angle / dispersion curve

Cite this article

Download citation ▾
Shuangxi Zhang, Mengkui Li. Influence of uneven trace spacing on Rayleigh wave dispersion. Journal of Earth Science, 2011, 22(2): 231-240 DOI:10.1007/s12583-011-0176-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ashiya K., Yoshioka O., Yokoyama H.. Estimation of Phase Velocities of Multiple Modes by Inversion of Frequency-Wave Number Spectrum and Its Application to Train Induced Ground Vibrations. Geophysical Exploration, 1999, 52(3): 214-226.

[2]

Asten M. W., Henstridge J. D.. Array Estimators and the Use of Microseisms for Reconnaissance of Sedimentary Basins. Geophysics, 1984, 49(11): 1828-1837.

[3]

Bodet L., van Wijk K., Bitri A., . Surface-Wave Inversion Limitations from Laser-Doppler Physical Modeling. J. Environ. Eng. Geophys., 2005, 10(2): 151-162.

[4]

Bodet L., Abraham O., Clorennec D.. Near-Offset Effects on Rayleigh-Wave Dispersion Measurements: Physical Modeling. Journal of Applied Geophysics, 2009, 68(1): 95-103.

[5]

Chen L. Z., Zhu J. Y., Yan X. S., . On Arrangement of Source and Receivers in SASW Testing. Soil Dynamics and Earthquake Engineering, 2004, 24(5): 389-396.

[6]

Forbriger T.. Inversion of Shallow-Seismic Wavefields: I. Wavefield Transformation. Geophysical Journal International, 2003, 153(3): 719-734.

[7]

Horike M.. Inversion of Phase Velocity of Long-Period Microtremors to the S-Wave-Velocity Structure down to the Basement in Urbanized Areas. J. Phys. Earth, 1985, 33(2): 59-96.

[8]

Lin C. P., Chang T. S.. Multi-station Analysis of Surface Wave Dispersion. Soil Dynamics and Earthquake Engineering, 2004, 24(11): 877-886.

[9]

Luo Y. H., Xia J. H., Miller R. D., . Rayleigh-Wave Mode Separation by High-Resolution Linear Radon Transform. Geophysical Journal International, 2009, 179(1): 254-264.

[10]

Matsushima T., Okada H.. Determination of Deep Geological Structures under Urban Areas Using Long-Period Microtremors. Geophysical Exploration, 1990, 43(1): 21-33.

[11]

McMechan G. A., Ottolini R.. Direct Observation of p-τ-Curve in a Slant Stacked Wave Field. Bull. Seis. Soc. Am., 1980, 70: 775-789.

[12]

McMechan G. A., Yedlin M. J.. Analysis of Dispersive Waves by Wave Field Transformation. Geophysics, 1981, 46(6): 869-874.

[13]

Miller, R. D., Xia, J. H., Park, C. B., et al., 1999. Using MASW to Map Bedrock in Olathe, Kansas. SEG Annual Meeting Expanded Technical Program with Biographies, Houston, Texas. 433–436

[14]

Nazarian S., Stokoe K. H., Hudson W. R.. Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems, 1983, Washington, D.C.: National Research Council 38 45

[15]

O’Neill A.. Full-Waveform Reflectivity for Modelling, Inversion and Appraisal of Seismic Surface Wave Dispersion in Shallow Site Investigations: [Dissertation], 2003, Perth, Australia: The University of Western Australia, School of Earth and Geographical Sciences

[16]

Park C. B., Miller R. D., Xia J. H.. Multichannel Analysis of Surface Waves. Geophysics, 1999, 64(3): 800-808.

[17]

Roesset J. M., Chang D. W., Stokoe K. H. II, . Modulus and Thickness of the Pavement Surface Layer from SASW Tests. Transportation Research Record, 1989, 1260: 53-63.

[18]

Sánchez-Salinero I., Roesset J. M., Shao K. Y., . Analytical Evaluation of Variables Affecting Surface Wave Testing of Pavements. Transportation Research Record, 1987, 1136: 86-95.

[19]

Stokoe II, K. H., Nazarian, S., 1983. Effectiveness of Ground Improvement from Spectral Analysis of Surface Waves. Proceeding of the Eighth European Conference on Soil Mechanics and Foundation Engineering, Helsinki, Finland

[20]

Xia J. H., Miller R. D., Park C. B.. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves. Geophysics, 1999, 64(3): 691-700.

[21]

Xia J. H., Xu Y. X., Miller R. D., . Estimation of Elastic Moduli in a Compressible Gibson Half-Space by Inverting Rayleigh Wave Phase Velocity. Surv. Geophys., 2006, 27(1): 1-17.

[22]

Xia J. H., Xu Y. X., Miller R. D.. Generating an Image of Dispersive Energy by Frequency Decomposition and Slant Stacking. Pure and Applied Geophysics, 2007, 164(5): 941-956.

[23]

Xiong Z. Q., Fang G. X.. Shallow Seismic Exploration, 2002, Beijing: Seismological Press 239

[24]

Yoon, S., Rix, G. J., 2004. Combined Active-Passive Surface-Wave Measurements for Near Surface Site Characterization. Symposium on the Application of Geophysics to Engineering and Environmental Problems, Proceedings, February 22–26, 2004, Colorado Springs, Colorado

[25]

Yoon, S., Rix, G. J., 2006. Evaluation of Near-Field Effects on Active Surface Wave Measurements with Multiple Receivers. Symposium on the Application of Geophysics to Engineering and Environmental Problems, Proceedings, April 2–6, 2006, Seattle, Washington

[26]

Zhang S. X., Chan L. S., Chen C. Y., . Apparent Phase Velocities and Fundamental-Mode Phase Velocities of Rayleigh Waves. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 563-569.

[27]

Zhang S. X., Chan L. S., Xia J. H.. The Selection of Field Acquisition Parameters for Dispersion Images from Multichannel Surface Wave Data. Pure and Applied Geophysics, 2004, 161(1): 185-201.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/