Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution

Bao Mei, Yixian Xu, Hui Qian

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 214.

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 214. DOI: 10.1007/s12583-011-0174-9
Article

Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution

Author information +
History +

Abstract

The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk (喀拉通克) region. Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone. All the P-wave arrival times are picked automatically with Akaike information criterion, and then checked manmachine interactively by short-receiver geometry. The database for local active-source tomographic inversion involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts. Checkerboard tests aimed at checking the reliability of the obtained velocity models are presented. The resulting V p distribution slices show a complicated 3-D structure beneath this area and offer a better understanding of three well-defined mineral deposits. Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits. Based on features of metallic ores we attempt to delimit their distributions and stretched directions.

Keywords

active source tomography / phase pick / shallow velocity structure / mineral distribution / optimization / 3-D iterative inversion

Cite this article

Download citation ▾
Bao Mei, Yixian Xu, Hui Qian. Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution. Journal of Earth Science, 2011, 22(2): 214 https://doi.org/10.1007/s12583-011-0174-9

References

Akaike H.. Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Process. Ann. Inst. Stat. Math., 1974, 26(1): 363-387.
CrossRef Google scholar
Bais G., Bruno P. P. G., Di-Fiore V., . Characterization of Shallow Volcanoclastic Deposits by Turning Ray Seismic Tomography: An Application to the Naples Urban Area. J. Appl. Geophys., 2003, 52(1): 11-21.
CrossRef Google scholar
Behm M.. 3-D Modelling of the Crustal S-Wave Velocity Structure from Active Source Data: Application to the Eastern Alps and the Bohemian Massif. Geophys. J. Int., 2009, 179(1): 265-278.
CrossRef Google scholar
Cai X. L., Cao J. M., Zhu J. S.. Lithospheric and Asthenospheric Structures of the Koktokay of Xinjiang to Jianyang of Sichuan Geoscience Transect. Geology in China, 2008, 35(3): 375-391.
Clark S. A., Zelt C. A., Magnani M. B., . Characterizing the Caribbean-South American Plate Boundary at 64°W Using Wide-Angle Seismic Data. J. Geophys. Res., 2008, 113 B7 B7401
CrossRef Google scholar
Evangelidis C. P., Minshull T. A., Henstock T. J.. Three-Dimensional Crustal Structure of Ascension Island from Active Source Seismic Tomography. Geophys. J. Int., 2004, 159(1): 311-325.
CrossRef Google scholar
Feng R., Zhu J. S., Ding Y. Y., . Using Surface Wave to Study the Crust Structure of China. Journal of Seismology, 1981, 2(3): 345-350.
Friedel M. J., Scott D. F., Williams T. J.. Temporal Imaging of Mine-Induced Stress Change Using Seismic Tomography. Eng. Geol., 1997, 46(2): 131-141.
CrossRef Google scholar
Hearn T. M., Ni J. F.. Pn Velocities beneath Continental Collision Zones: The Turkish-Iranian Plateau. Geophys. J. Int., 1994, 117(2): 273-283.
CrossRef Google scholar
Heincke B., Maurer H., Green A. G., . Characterizing an Unstable Mountain Slope Using Shallow 2D and 3D Seismic Tomography. Geophysics, 2006, 71(6): B241-B256.
CrossRef Google scholar
Kanli A. I.. Initial Velocity Model Construction of Seismic Tomography in Near-Surface Applications. J. Appl. Geophys., 2009, 67(1): 52-62.
CrossRef Google scholar
Karabulut H., Ozalaybey S., Taymaz T., . A Tomographic Image of the Shallow Crustal Structure in the Eastern Marmara. Geophys. Res. Lett., 2003, 30 24 2277
CrossRef Google scholar
Koulakov I.. LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bull. Seismol. Soc. Am., 2009, 99(1): 194-214.
CrossRef Google scholar
Koulakov I., Jakovlev A., Luehr B. G.. Anisotropic Structure beneath Central Java from Local Earthquake Tomography. Geochem., Geophys., Geosys., 2009, 10 Q02011
CrossRef Google scholar
Li H. O., Jiang M., Wang Y. J., . Image of Crust and Upper Mantle Structure along the Array from Fuyun to Kuerle by P-to-S Converted Waves. Acta Geologica Sinica, 2006, 80(1): 135-141.
CrossRef Google scholar
Li Q., Liu R. F., Du A. L.. Seismic Tomography of Xinjiang and Adjacent Region. Chinese Chinese J. Geophys., 1994, 37(3): 311-320.
Liu F. T., Qu K. X., Wu H., . The Tomography of Chinese Continent and Adjacent Area. Chinese J. Geophys., 1989, 32(3): 281-291.
Malinowski M., Operto S.. Advantages of the Full-Waveform Inversion: Real Data Example from the Polish Basin. EOS Trans. AGU, 2006, 87(52): S43B-1385.
Maxwell S. C., Young R. P.. Sequential Velocity Imaging and Microseismic Monitoring of Mining-Induced Stress Change. Pure Appl. Geophys., 1992, 139: 421-447.
CrossRef Google scholar
Nielsen C., Thybo H.. No Moho Uplift below the Baikal Rift Zone: Evidence from a Seismic Refraction Profile across Southern Lake Baikal. J. Geophys. Res., 2009, 114 B08306
CrossRef Google scholar
Nolet G.. Iyer H. M., Hirahara K.. Solving Large Linearized Tomographic Problems. Seismic Tomography: Theory and Practice, 1993, London: Chapmanand & Hall 227 247
Paige C. C., Saunders M. A.. LSQR: An Algorithm for Sparse Linear-Equations and Sparse Least-Squares. ACM Trans. Math. Software, 1982, 8(1): 43-71.
CrossRef Google scholar
Sato H., Tanio I., Takaya I.. Seismic Reflection Image of Lithospheric Structure beneath Shikoku, SW Japan: Preliminary Result of Shikoku 2002. EOS Trans. AGU, 2002, 83 47 F1294
Schmitz M., Martinsa A., Izarra C., . The Major Features of the Crustal Structure in North-Eastern Venezuela from Deep Wide-Angle Seismic Observations and Gravity Modelling. Tectonophysics, 2005, 399(1–4): 109-124.
CrossRef Google scholar
Shih R.. Three Dimensional Seismic Tomography of the Shallow Subsurface Structure under the Meihua Lake in Ilan, Northeastern Taiwan. EOS Trans. AGU, 2008, 89(53): S23A-1150.
Sleeman R., van Eck T.. Robust Automatic P-Phase Picking: An On-Line Implementation in the Analysis of Broadband Seismogram Recordings. Phys. Earth Planet. Inter., 1999, 113(1–4): 265-275.
CrossRef Google scholar
ten Brink U. S., Al-Zoubi A. S., Flores C. H., . Seismic Imaging of Deep Low-Velocity Zone beneath the Dead Sea Basin and Transform Fault: Implications for Strain Localization and Crustal Rigidity. Geophys. Res. Lett., 2006, 33 24 L24314
CrossRef Google scholar
Teng J. W., Liu F. T., Quan Y. L.. Seismic Tomography of the Crust and Mantle under the Orogenic Belts and Sedimentary Basins of North Western China, 1994, Beijing: Oceanic Publication 66 80
Wang Y. J., Qian R. Y., Jiang M., . Image of Crust and Upper Mantle Velocity Structure along the Array from Fuyun to Kuerle by Seismic Tomography. Acta Geologica Sinica, 2006, 80(1): 142-147.
Wang Y. X., Han G. H., Jiang M., . Crustal Structure along the Geosciences Transect from Altay to Altun Tagh. Chinese J. Geophys., 2004, 47(2): 240-249.
Wei S. H., Xue G. Q., Qian H., . Xinjiang Kuche-Kelamayi Seismic Tomography. Progress in Geophysics, 2000, 15(4): 46-54.
Wessel P., Smith W. H. F.. New, Improved Version of the Generic Mapping Tools Released. EOS Trans. AGU, 1998, 79 579
CrossRef Google scholar
Xiao W. J., Shu L. S., Gao J., . Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny. China Basic Science, 2009, 11(3): 14-19.
Yang Z., Ge S. M.. Preliminary Study of the Fracture Zone by 1931 Fuyun Earthquake and the Features of Neotectonic Movement. Seismology and Geology, 1980, 2(3): 31-37.
Yordkayhun S., Tryggvason A., Norden B., . 3D Seismic Traveltime Tomography Imaging of the Shallow Subsurface at the CO2 SINK Project Site, Ketzin, Germany. Geophysics, 2009, 74(1): G1-G15.
CrossRef Google scholar
Zhang H. J., Thurber C., Rowe C.. Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings. Bull. Seismol. Soc. Am., 2003, 93(5): 1904-1912.
CrossRef Google scholar
Zhang Z. J., Teng J. W., Fan J. Y., . East-West Crustal Structure and “Down-Bowing” Moho under the Northern Tibet Revealed by Wide-Angle Seismic Profile. Science in China (Series D), 2002, 45(6): 550-558.
CrossRef Google scholar
Zhang Z. J., Teng J. W., Yang L. Q., . Crustal Structure and Eastward Escaping of Crustal Materials in the Southern Tibet. Science in China (Series D), 2002, 32(10): 793-798.

Accesses

Citations

Detail

Sections
Recommended

/