Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution

Bao Mei , Yixian Xu , Hui Qian

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 214

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 214 DOI: 10.1007/s12583-011-0174-9
Article

Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution

Author information +
History +
PDF

Abstract

The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk (喀拉通克) region. Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone. All the P-wave arrival times are picked automatically with Akaike information criterion, and then checked manmachine interactively by short-receiver geometry. The database for local active-source tomographic inversion involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts. Checkerboard tests aimed at checking the reliability of the obtained velocity models are presented. The resulting V p distribution slices show a complicated 3-D structure beneath this area and offer a better understanding of three well-defined mineral deposits. Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits. Based on features of metallic ores we attempt to delimit their distributions and stretched directions.

Keywords

active source tomography / phase pick / shallow velocity structure / mineral distribution / optimization / 3-D iterative inversion

Cite this article

Download citation ▾
Bao Mei, Yixian Xu, Hui Qian. Active source tomography in northwestern Xinjiang, China: Implication for mineral distribution. Journal of Earth Science, 2011, 22(2): 214 DOI:10.1007/s12583-011-0174-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaike H.. Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Process. Ann. Inst. Stat. Math., 1974, 26(1): 363-387.

[2]

Bais G., Bruno P. P. G., Di-Fiore V., . Characterization of Shallow Volcanoclastic Deposits by Turning Ray Seismic Tomography: An Application to the Naples Urban Area. J. Appl. Geophys., 2003, 52(1): 11-21.

[3]

Behm M.. 3-D Modelling of the Crustal S-Wave Velocity Structure from Active Source Data: Application to the Eastern Alps and the Bohemian Massif. Geophys. J. Int., 2009, 179(1): 265-278.

[4]

Cai X. L., Cao J. M., Zhu J. S.. Lithospheric and Asthenospheric Structures of the Koktokay of Xinjiang to Jianyang of Sichuan Geoscience Transect. Geology in China, 2008, 35(3): 375-391.

[5]

Clark S. A., Zelt C. A., Magnani M. B., . Characterizing the Caribbean-South American Plate Boundary at 64°W Using Wide-Angle Seismic Data. J. Geophys. Res., 2008, 113 B7 B7401

[6]

Evangelidis C. P., Minshull T. A., Henstock T. J.. Three-Dimensional Crustal Structure of Ascension Island from Active Source Seismic Tomography. Geophys. J. Int., 2004, 159(1): 311-325.

[7]

Feng R., Zhu J. S., Ding Y. Y., . Using Surface Wave to Study the Crust Structure of China. Journal of Seismology, 1981, 2(3): 345-350.

[8]

Friedel M. J., Scott D. F., Williams T. J.. Temporal Imaging of Mine-Induced Stress Change Using Seismic Tomography. Eng. Geol., 1997, 46(2): 131-141.

[9]

Hearn T. M., Ni J. F.. Pn Velocities beneath Continental Collision Zones: The Turkish-Iranian Plateau. Geophys. J. Int., 1994, 117(2): 273-283.

[10]

Heincke B., Maurer H., Green A. G., . Characterizing an Unstable Mountain Slope Using Shallow 2D and 3D Seismic Tomography. Geophysics, 2006, 71(6): B241-B256.

[11]

Kanli A. I.. Initial Velocity Model Construction of Seismic Tomography in Near-Surface Applications. J. Appl. Geophys., 2009, 67(1): 52-62.

[12]

Karabulut H., Ozalaybey S., Taymaz T., . A Tomographic Image of the Shallow Crustal Structure in the Eastern Marmara. Geophys. Res. Lett., 2003, 30 24 2277

[13]

Koulakov I.. LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bull. Seismol. Soc. Am., 2009, 99(1): 194-214.

[14]

Koulakov I., Jakovlev A., Luehr B. G.. Anisotropic Structure beneath Central Java from Local Earthquake Tomography. Geochem., Geophys., Geosys., 2009, 10 Q02011

[15]

Li H. O., Jiang M., Wang Y. J., . Image of Crust and Upper Mantle Structure along the Array from Fuyun to Kuerle by P-to-S Converted Waves. Acta Geologica Sinica, 2006, 80(1): 135-141.

[16]

Li Q., Liu R. F., Du A. L.. Seismic Tomography of Xinjiang and Adjacent Region. Chinese Chinese J. Geophys., 1994, 37(3): 311-320.

[17]

Liu F. T., Qu K. X., Wu H., . The Tomography of Chinese Continent and Adjacent Area. Chinese J. Geophys., 1989, 32(3): 281-291.

[18]

Malinowski M., Operto S.. Advantages of the Full-Waveform Inversion: Real Data Example from the Polish Basin. EOS Trans. AGU, 2006, 87(52): S43B-1385.

[19]

Maxwell S. C., Young R. P.. Sequential Velocity Imaging and Microseismic Monitoring of Mining-Induced Stress Change. Pure Appl. Geophys., 1992, 139: 421-447.

[20]

Nielsen C., Thybo H.. No Moho Uplift below the Baikal Rift Zone: Evidence from a Seismic Refraction Profile across Southern Lake Baikal. J. Geophys. Res., 2009, 114 B08306

[21]

Nolet G.. Iyer H. M., Hirahara K.. Solving Large Linearized Tomographic Problems. Seismic Tomography: Theory and Practice, 1993, London: Chapmanand & Hall 227 247

[22]

Paige C. C., Saunders M. A.. LSQR: An Algorithm for Sparse Linear-Equations and Sparse Least-Squares. ACM Trans. Math. Software, 1982, 8(1): 43-71.

[23]

Sato H., Tanio I., Takaya I.. Seismic Reflection Image of Lithospheric Structure beneath Shikoku, SW Japan: Preliminary Result of Shikoku 2002. EOS Trans. AGU, 2002, 83 47 F1294

[24]

Schmitz M., Martinsa A., Izarra C., . The Major Features of the Crustal Structure in North-Eastern Venezuela from Deep Wide-Angle Seismic Observations and Gravity Modelling. Tectonophysics, 2005, 399(1–4): 109-124.

[25]

Shih R.. Three Dimensional Seismic Tomography of the Shallow Subsurface Structure under the Meihua Lake in Ilan, Northeastern Taiwan. EOS Trans. AGU, 2008, 89(53): S23A-1150.

[26]

Sleeman R., van Eck T.. Robust Automatic P-Phase Picking: An On-Line Implementation in the Analysis of Broadband Seismogram Recordings. Phys. Earth Planet. Inter., 1999, 113(1–4): 265-275.

[27]

ten Brink U. S., Al-Zoubi A. S., Flores C. H., . Seismic Imaging of Deep Low-Velocity Zone beneath the Dead Sea Basin and Transform Fault: Implications for Strain Localization and Crustal Rigidity. Geophys. Res. Lett., 2006, 33 24 L24314

[28]

Teng J. W., Liu F. T., Quan Y. L.. Seismic Tomography of the Crust and Mantle under the Orogenic Belts and Sedimentary Basins of North Western China, 1994, Beijing: Oceanic Publication 66 80

[29]

Wang Y. J., Qian R. Y., Jiang M., . Image of Crust and Upper Mantle Velocity Structure along the Array from Fuyun to Kuerle by Seismic Tomography. Acta Geologica Sinica, 2006, 80(1): 142-147.

[30]

Wang Y. X., Han G. H., Jiang M., . Crustal Structure along the Geosciences Transect from Altay to Altun Tagh. Chinese J. Geophys., 2004, 47(2): 240-249.

[31]

Wei S. H., Xue G. Q., Qian H., . Xinjiang Kuche-Kelamayi Seismic Tomography. Progress in Geophysics, 2000, 15(4): 46-54.

[32]

Wessel P., Smith W. H. F.. New, Improved Version of the Generic Mapping Tools Released. EOS Trans. AGU, 1998, 79 579

[33]

Xiao W. J., Shu L. S., Gao J., . Geodynamic Processes of the Central Asian Orogenic Belt and Its Metallogeny. China Basic Science, 2009, 11(3): 14-19.

[34]

Yang Z., Ge S. M.. Preliminary Study of the Fracture Zone by 1931 Fuyun Earthquake and the Features of Neotectonic Movement. Seismology and Geology, 1980, 2(3): 31-37.

[35]

Yordkayhun S., Tryggvason A., Norden B., . 3D Seismic Traveltime Tomography Imaging of the Shallow Subsurface at the CO2 SINK Project Site, Ketzin, Germany. Geophysics, 2009, 74(1): G1-G15.

[36]

Zhang H. J., Thurber C., Rowe C.. Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings. Bull. Seismol. Soc. Am., 2003, 93(5): 1904-1912.

[37]

Zhang Z. J., Teng J. W., Fan J. Y., . East-West Crustal Structure and “Down-Bowing” Moho under the Northern Tibet Revealed by Wide-Angle Seismic Profile. Science in China (Series D), 2002, 45(6): 550-558.

[38]

Zhang Z. J., Teng J. W., Yang L. Q., . Crustal Structure and Eastward Escaping of Crustal Materials in the Southern Tibet. Science in China (Series D), 2002, 32(10): 793-798.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/