Three-dimensional S-wave velocity structure in eastern Tibet from ambient noise Rayleigh and love wave tomography

Xiaoming Xu , Hongyi Li , Meng Gong , Zhifeng Ding

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 195 -204.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 195 -204. DOI: 10.1007/s12583-011-0172-y
Article

Three-dimensional S-wave velocity structure in eastern Tibet from ambient noise Rayleigh and love wave tomography

Author information +
History +
PDF

Abstract

We apply ambient noise tomography to continuous three-component broadband seismic data between January 1, 2008 and December 31, 2008 from the regional networks of 76 stations deployed by China Earthquake Administration. Ambient noise cross-correlations were performed to produce the Green’s functions of each station-pair. Within the period from 6 to 50 s, Rayleigh and Love wave dispersion curves were measured using the multiple filter analysis method. Then three-dimensional (3-D) S-wave velocity structures from the surface down to 70 km are inverted from both Rayleigh and Love wave dispersion results. The obtained S-wave velocity maps show strong lateral variations and correlate well with the distinct geological and tectonic features in the study area. The Sichuan basin displays low velocity in shallow depth due to thick sedimentary deposits but high velocity in the mid-lower crust; the eastern Tibetan plateau is clearly featured with a low-velocity zone in its mid-to-lower crust which is consistent with the crustal flow model proposed to explain the mechanism of uplift and pattern of deformation for the Tibetan plateau. Meanwhile, our results also exhibit that the crustal thickness decreased from the eastern Tibetan plateau to the Sichuan basin.

Keywords

eastern Tibet / ambient noise / Green’s function / crustal and uppermost mantle structure

Cite this article

Download citation ▾
Xiaoming Xu, Hongyi Li, Meng Gong, Zhifeng Ding. Three-dimensional S-wave velocity structure in eastern Tibet from ambient noise Rayleigh and love wave tomography. Journal of Earth Science, 2011, 22(2): 195-204 DOI:10.1007/s12583-011-0172-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai D. H., Unsworth M. J., Meju M. A., . Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 2010, 3(5): 358-362.

[2]

Bensen G. D., Ritzwoller M. H., Barmin M. P., . Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophys. J. Int., 2007, 169(3): 1239-1260.

[3]

Bensen G. D., Ritzwoller M. H., Shapiro N. M.. Broadband Ambient Noise Surface Wave Tomography across the United States. J. Geophys. Res., 2008, 113 B5 B05306

[4]

Brown L. D., Zhao W. J., Nelson K. D., . Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 1996, 274(5293): 1688-1690.

[5]

Campillo M.. Phase and Correlation in Random Seismic Fields and the Reconstruction of the Green Function. Pure Appl. Geophys., 2006, 163(2–3): 475-502.

[6]

Campillo M., Paul A.. Long-Range Correlations in the Diffuse Seismic Coda. Science, 2003, 299(5656): 547-549.

[7]

Clark M. K., Royden L. H.. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 2000, 28: 703-706.

[8]

Constable S. C., Parker R. L., Constable C. G.. Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophysics, 1987, 52(3): 289-300.

[9]

de Groot-Hedlin C. D., Constable S. C.. Occam’s Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data. Geophysics, 1990, 55(12): 1613-1624.

[10]

Dziewonski A., Bloch S., Landisman M.. A Technique for the Analysis of Transient Seismic Signals. Bull. Seismol. Soc. Am., 1969, 59(1): 427-444.

[11]

England P. C., Houseman G.. Extension during Continental Convergence with Application to the Tibetan Plateau. J. Geophys. Res., 1989, 94(B12): 17561-17579.

[12]

England P., Molnar P.. Active Deformation of Asia: From Kinematics to Dynamics. Science, 1997, 278(5338): 647-650.

[13]

Gudmundsson, Khan A., Voss P.. Rayleigh-Wave Group-Velocity of the Icelandic Crust from Correlation of Ambient Seismic Noise. Geophys. Res. Lett., 2007, 34 14 L14314

[14]

Herrmann R. B.. Some Aspects of Band-Pass Filtering of Surface Waves. Bull. Seismol. Soc. Am., 1973, 63: 663-671.

[15]

Herrmann, R. B., Ammon, C. J., 2004. Surface Waves, Receiver Functions and Crustal Structure. Computer Programs in Seismology, Version 3.30. Saint Louis University. http://www.eas.slu.edu/People/RBHerrmann/CPS330.html

[16]

Houseman G., England P.. Crustal Thickening versus Lateral Expulsion in the Indian-Asian Continental Collision. J. Geophys. Res., 1993, 98(B7): 12233-12249.

[17]

Li H. Y., Bernardi F., Michelini A.. Surface Wave Dispersion Measurements from Ambient Seismic Noise Analysis in Italy. Geophys. J. Int., 2010, 180(3): 1242-1252.

[18]

Li H. Y., Su W., Wang C. Y., . Ambient Noise Love Wave Tomography in the Eastern Margin of the Tibetan Plateau. Tectonophysics, 2010, 491(1–4): 194-204.

[19]

Li H. Y., Su W., Wang C. Y., . Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth Planet. Sci. Lett., 2009, 282(1–4): 201-211.

[20]

Lin F. C., Moschetti M. P., Ritzwoller M. H.. Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh and Love Wave Phase Velocity Maps. Geophys. J. Int., 2008, 173(1): 281-298.

[21]

Liu M. J., Mooney W. D., Li S. L., . Crustal Structure of the Northeastern Margin of the Tibetan Plateau from the Songpan-Ganzi Terrane to the Ordos Basin. Tectonophysics, 2006, 420(1–2): 253-266.

[22]

Lobkis O. I., Weaver R. L.. On the Emergence of the Green’s Function in the Correlation of a Diffuse Field. J. Acoust. Soc. Am., 2001, 110(6): 3011-3017.

[23]

Molnar P., Tapponnier P.. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 1975, 189(4201): 419-426.

[24]

Rippe D., Unsworth M.. Quantifying Crustal Flow in Tibet with Magnetotelluric Data. Phys. Earth Planet. Inter., 2010, 179(3–4): 107-121.

[25]

Ross A. R., Brown L. D., Pananont P., . Deep Reflection Surveying in Central Tibet: Lower-Crustal Layering and Crustal Flow. Geophys. J. Int., 2004, 156(1): 115-128.

[26]

Rowley D. B.. Age of Initiation of Collision between India and Asia: A Review of Stratigraphic Data. Earth Planet. Sci. Lett., 1996, 145(1–4): 1-13.

[27]

Royden L. H., Burchfiel B. C., van der Hilst R. D.. The Geological Evolution of the Tibetan Plateau. Science, 2008, 321(5892): 1054-1058.

[28]

Royden L. H., Burchfiel B. C., King R. W., . Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 1997, 276(5313): 788-790.

[29]

Sabra K. G., Gerstoft P., Roux P., . Extracting Time-Domain Green’s Function Estimates from Ambient Seismic Noise. Geophys. Res. Lett., 2005, 32 3 L03310

[30]

Saygin E., Kennett B. L. N.. Ambient Seismic Noise Tomography of Australian Continent. Tectonophysics, 2010, 481(1–4): 116-125.

[31]

Shapiro N. M., Campillo M.. Emergence of Broadband Rayleigh Waves from Correlations of the Ambient Seismic Noise. Geophys. J. Int., 2004, 31 7 L07614

[32]

Shapiro N. M., Campillo M., Stehly L., . High-Resolution Surface Wave Tomography from Ambient Seismic Noise. Science, 2005, 307(5715): 1615-1618.

[33]

Tapponnier P., Xu Z. Q., Roger F., . Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677.

[34]

Wang C. Y., Chan W. W., Mooney W. D.. Three-Dimensional Velocity Structure of Crust and Upper Mantle in Southwestern China and Its Tectonic Implications. J. Geophys. Res., 2003, 108 B9 2442

[35]

Wang C. Y., Han W. B., Wu J. P., . Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. J. Geophys. Res., 2007, 112 B7 B07307

[36]

Wang Q., Zhang P. Z., Jeffrey T., . Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 2001, 249(5542): 574-577.

[37]

Wapenaar K.. Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Phys. Rev. Lett., 2004, 93 25 254301

[38]

Weaver R. L.. Information from Seismic Noise. Science, 2005, 307(5715): 1568-1569.

[39]

Wei W. B., Unsworth M., Jones A., . Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 2001, 292(5517): 716-718.

[40]

Xu Y., Li Z. W., Huang R. Q., . Seismic Structure of the Longmen Shan Region from S-Wave Tomography and Its Relationship with the Wenchuan M s 8.0 Earthquake on 12 May 2008, Southwestern China. Geophys. Res. Lett., 2010, 37 L02304

[41]

Yang Y. J., Ritzwoller M. H., Levshin A. L., . Ambient Noise Rayleigh Wave Tomography across Europe. Geophys. J. Int., 2007, 168(1): 259-274.

[42]

Yao H. J., Beghein C., ven der Hilst R. D.. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis—II, Crustal and Upper-Mantle Structure. Geophys. J. Int., 2008, 173(1): 205-219.

[43]

Zhang Z. J., Yuan X. H., Chen Y., . Seismic Signature of the Collision between the East Tibetan Escape Flow and the Sichuan Basin. Earth Planet. Sci. Lett., 2010, 292(3–4): 254-264.

[44]

Zheng S. H., Sun X. L., Song X. D., . Surface Wave Tomography of China from Ambient Seismic Noise Correlation. Geochem., Geophys., Geosyst., 2008, 9 Q05020

[45]

Zheng X. F., Ouyang B., Zhang D. N., . Technical System Construction of Data Backup Centre for China Seismograph Network and the Data Support to Researches on the Wenchuan Earthquake. Chinese J. Geophys., 2009, 52(5): 1412-1417.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/