On the layering artifacts in seismic imageries

Huawei Zhou

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 182

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 182 DOI: 10.1007/s12583-011-0171-z
Article

On the layering artifacts in seismic imageries

Author information +
History +
PDF

Abstract

A common feature in seismic imageries of the crust and mantle is a layering pattern. Layering structures do exist in multiple scales, such as layered strata and unconformities in local and regional scales, and undulating seismic discontinuities in the crust and mantle. However, layering artifact also exists due to limitations in seismic processing and data coverage. There is a tendency for seismic stacking methods to over-map reflectors and scatters into along-isochron layers. In contrast, seismic tomography methods tend to under-map sub-horizontal layers with along-raypath smears and artifacts of various de-mean processes. To better identify signals and artifacts in seismic imageries, it is necessary to understand the origins of various artifacts and make careful comparison between the solutions of different data and methods.

Keywords

imaging artifact / layering / seismic imaging / tomography / seismic interpretation

Cite this article

Download citation ▾
Huawei Zhou. On the layering artifacts in seismic imageries. Journal of Earth Science, 2011, 22(2): 182 DOI:10.1007/s12583-011-0171-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abma R., Sun J., Bernitsas N.. Antialiasing Methods in Kirchhoff Migration. Geophysics, 1999, 64(6): 1783-1792.

[2]

Ammon C. J., Randall G. E., Zandt G. E.. On the Nonuniqueness of Receiver Function Inversions. J. Geophys. Res., 1990, 95(B10): 15303-15318.

[3]

Chavarria J. A., Malin P. E., Catchings R. D., . A Look inside the San Andreas Fault at Parkfield through Vertical Seismic Profiling. Science, 2003, 302(5651): 1746-1748.

[4]

Fuis G. S., Clayton R. W., Davis P. M., . Fault Systems of the 1971 San Fernando and 1994 Northridge Earthquakes, Southern California: Relocated Aftershocks and Seismic Images from LARSE II. Geology, 2003, 31: 171-174.

[5]

Fuis, G. S., Kohler, M. D., Scherwath, M., et al., 2007. A Comparison between the Transpressional Plate Boundaries of the South Island, New Zealand, and Southern California, USA: The Alpine and San Andreas Fault Systems, in a Continental Plate Boundary: Tectonics at South Island, New Zealand. In: Okaya, D., Stern, T., Davey, F., eds., AGU Monograph, 175: 307–327

[6]

Fuis G. S., Ryberg T., Lutter W. J., . Seismic Mapping of Shallow Fault Zones in the San Gabriel Mountains from the Los Angeles Region Seismic Experiment, Southern California. J. Geophys. Res., 2001, 106(B4): 6549-6568.

[7]

Gao D. L.. 3D Seismic Volume Visualization and Interpretation: An Integrated Workflow with Case Studies. Geophysics, 2009, 74(1): W1-W12.

[8]

Hung S. H., Shen Y., Chiao L. Y.. Imaging Seismic Velocity Structure beneath the Iceland Hot Spot: A Finite Frequency Approach. J. Geophys. Res., 2004, 109(B8): 1-16.

[9]

Klemperer S. L., Hauge T. A., Hauser E. C., . The Moho in the Northern Basin and Range Province, Nevada, along the COCORP 40°N Seismic Reflection Transect. GSA Bull., 1986, 97: 603-618.

[10]

Larkin S. P., Levander A., Henstock T. J., . Is the Moho Flat? Seismic Evidence for a Rough Crust-Mantle Interface beneath the Northern Basin and Range. Geology, 1997, 25: 451-454.

[11]

Richards-Dinger K. B., Shearer P. M.. Estimating Crustal Thickness in Southern California by Stacking PmP Arrivals. J. Geophys. Res., 1997, 102(B7): 15211-15224.

[12]

Ross A. R., Brown L. D., Pananont P., . Deep Reflection Surveying in Central Tibet: Lower-Crustal Layering and Crustal Flow. Geophys. J. Int., 2004, 156(1): 115-128.

[13]

Schneider W. A.. Developments in Seismic Data Processing and Analysis (1968–1970). Geophysics, 1971, 36(6): 1043-1073.

[14]

Shearer P. M., Flanagan M. P., Hedlin M. A. H.. Experiments in Migration Processing of SS Precursor Data to Image Upper Mantle Discontinuity Structure. J. Geophys. Res., 1999, 104(B4): 7229-7242.

[15]

Thornton M., Zhou H. W.. Crustal-Scale Prestack Depth Imaging of the 1994 and 1999 LARSE Surveys. Geophysical Prospecting, 2008, 56(4): 577-585.

[16]

Youn O. K., Zhou H. W.. Depth Imaging with Multiples. Geophysics, 2001, 66(1): 246-255.

[17]

Yuan H. Y., Romanowicz B.. Lithospheric Layering in the North American Craton. Nature, 2010, 466(7310): 1063-1068.

[18]

Zhao D. P.. Seismic Structure and Origin of Hotspots and Mantle Plumes. Earth Planet. Sci. Lett., 2001, 192(3): 251-265.

[19]

Zhou H. W.. How Well can We Resolve the Deep Seismic Slab with Seismic Tomography?. Geophys. Res. Lett., 1988, 15(12): 1425-1428.

[20]

Zhou H. W.. Multiscale Deformable Layer Tomography. Geophysics, 2006, 71(3): R11-R19.

[21]

Zhou H. W., Li L., Bjorklund T., . A Comparative Analysis of Deformable Layer Tomography and Cell Tomography along the LARSE Lines in Southern California. Geophys. J. Int., 2010, 180(3): 1200-1222.

[22]

Zhu L. P.. Deformation in the Lower Crust and Downward Extent of the San Andreas Fault as Revealed by Teleseismic Waveforms. Earth, Planets and Space, 2002, 54(11): 1005-1010.

[23]

Zhu L. P., Kanamori H.. Moho Depth Variation in Southern California from Teleseismic Receiver Functions. J. Geophys. Res., 2000, 105(B2): 2969-2980.

[24]

Zhu J. M., Lines L. R.. Comparison of Kirchhoff and Reverse-Time Migration Methods with Applications to Prestack Depth Imaging of Complex Structures. Geophysics, 1998, 63(4): 1166-1176.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/