Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope

Li Li, Donald J. Weidner, John Brodholt, Dario Alfè, G. David Price

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 169-175.

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 169-175. DOI: 10.1007/s12583-011-0169-6
Article

Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope

Author information +
History +

Abstract

We calculated thermo-elastic properties of pyrope (Mg3Al2Si3O12) at mantle pressures and temperatures using Ab initio molecular dynamic simulation. A third-order Birch-Murnaghan equation at a reference temperature of 2 000 K fits the calculations with bulk modulus, K 0=159.5 GPa, K 0′=4.3, V 0=785.89 Å3, Grüneisen parameter, γ 0=1.15, q=0.80, Anderson Grüneisen parameter δ T=3.76 and thermal expansion, α 0=2.93×10−5 K−1. Referenced to room temperature, where V 0=750.80 Å3, γ 0 and α 0 become 1.11 and 2.47×10−5 K−1. The elastic properties of pyrope are found to be nearly isotropic at transition zone conditions.

Keywords

AIMD / thermo-elasticity / pyrope / high pressure

Cite this article

Download citation ▾
Li Li, Donald J. Weidner, John Brodholt, Dario Alfè, G. David Price. Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope. Journal of Earth Science, 2011, 22(2): 169‒175 https://doi.org/10.1007/s12583-011-0169-6

References

Alfè D.. Ab Initio Molecular Dynamics, a Simple Algorithm for Charge Extrapolation. Computer Physics Communications, 1999, 118(1): 31-33.
CrossRef Google scholar
Allen M. P., Tildesley D. J.. Computer Simulation of Liquids, 1997, New York: Oxford University Press 408
Bina C. R., Helffrich G. R.. Calculation of Elastic Properties from Thermodynamic Equation of State Principles. Annu. Rev. Earth Planet. Sci., 1992, 20: 527-552.
CrossRef Google scholar
Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B, 1994, 50(24): 17953-17979.
CrossRef Google scholar
Brown J. M., Shankland T. J.. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles. Geophys. J. R. Astr. Soc., 1981, 66(3): 579-596.
Chen G. L., Cooke J. A., Gwanmesia G. D., . Elastic Wave Velocities at Mg3Al2Si3O13—Pyrope Garnet to 10 GPa. American Mineralogist, 1999, 84(3): 384-388.
Conrad P. G., Zha C. S., Mao H. K., . The High-Pressure, Single-Crystal Elasticity of Pyrope, Grossular, and Andradite. American Mineralogist, 1999, 84(3): 374-383.
Deuss A., Woodhouse J.. Seismic Observations of Splitting of the Mid-transition Zone Discontinuity in Earth’s Mantle. Science, 2001, 294(5541): 354-357.
CrossRef Google scholar
Fisher K. M., Wiens D. A.. The Depth Distribution of Mantle Anisotropy beneath the Tonga Subduction Zone. Earth and Planetary Science Letters, 1996, 142(1–2): 253-260.
CrossRef Google scholar
Gossler J., Kind R.. Seismic Evidence for very Deep Roots of Continents. Earth and Planetary Science Letters, 1996, 138(1–4): 1-13.
CrossRef Google scholar
Gu Y., Dziewonski A. M., Agee C. B.. Global De-correlation of the Topography of Transition Zone Discontinuities. Earth and Planetary Science Letters, 1998, 157(1–2): 57-67.
CrossRef Google scholar
Gwanmesia G. D., Zhang J., Darling K., . Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1 000 °C. Physics of the Earth and Planetary Interiors, 2006, 155(3–4): 179-190.
CrossRef Google scholar
Kresse G., Furthmüller J.. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mat. Sci., 1996, 6(1): 15-50.
CrossRef Google scholar
Kresse G., Furthmüller J.. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B, 1996, 54(16): 11169-11186.
CrossRef Google scholar
Leitner B. J., Weidner D. J., Liebermann R. C.. Elasticity of Single Crystal Pyrope and Implications for Garnet Solid Solution Series. Physics of the Earth and Planetary Interiors, 1980, 22(2): 111-121.
CrossRef Google scholar
Li L., Weidner D. J.. Effect of Phase Transitions on Bulk Dispersion and Attenuation: Implications for the Earth. Nature, 2008, 454: 984-986.
CrossRef Google scholar
Li L., Weidner D. J., Brodholt J., . Phase Stability of CaSiO3 Perovskite at High Pressure and Temperature: Insights from Ab Initio Molecular Dynamics. Physics of the Earth and Planetary Interiors, 2005, 155(3–4): 260-268.
Li L., Weidner D. J., Brodholt J., . Elasticity of Mg2SiO4 Ringwoodite at Mantle Conditions. Physics of the Earth and Planetary Interiors, 2006, 157(3–4): 181-187.
CrossRef Google scholar
Li L., Weidner D. J., Brodholt J., . Elasticity of CaSiO3 Perovskite at High Pressure and High Temperature. Physics of the Earth and Planetary Interiors, 2006, 155(3–4): 249-259.
CrossRef Google scholar
Li L., Weidner D. J., Brodholt J., . Ab Initio Molecular Dynamics Study of Elasticity of Akimotoite MgSiO3 at Mantle Conditions. Physics of the Earth and Planetary Interiors, 2009, 173(1–2): 115-120.
CrossRef Google scholar
Mittal R., Chaplot S. L., Choudhury N.. Lattice Dynamics Calculations of the Phonon Spectra and Thermodynamic Properties of the Aluminosilicate Garnets Pyrope, Grossular, and Spessartine M3Al2Si3O12 (M=Mg, Ca, and Mn). Phys. Rev. B, 2001, 64 9 094302
CrossRef Google scholar
Montagner J. P., Kennett B. L. N.. How to Reconcile Body-Wave and Normal Mode—Reference Earth Models. Geophys. J. Int., 1996, 125(1): 229-248.
CrossRef Google scholar
Nye J. F.. Physical Properties of Crystals, 1957, Ely House, London: Oxford University Press
Oganov A. R., Brodholt J. P., Price G. D.. Ab Initio Elasticity and Thermal Equation of State of MgSiO3 Perovskite. Earth and Planetary Science Letters, 2001, 184(3–4): 555-560.
CrossRef Google scholar
Oganov A. R., Brodholt J. P., Price G. D.. The Elastic Constants of MgSiO3 Perovskite at Pressures and Temperatures of the Earth’s Mantle. Nature, 2001, 411(6840): 934-937.
CrossRef Google scholar
Pavese A.. Quasi-harmonic Computer Simulations of the Structural Behaviour and EOS of Pyrope at High Pressure and High Temperature. Phys. Chem. Minerals, 1999, 26(8): 649-657.
CrossRef Google scholar
Perdew J. P., Chevary J. A., Vosko S. H., . Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B, 1992, 46(11): 6671-6687.
CrossRef Google scholar
Revenaugh J., Jordan T. H.. The ScS Phase in the Reflection of S-Waves from the Core-Mantle Boundary. Journal of Geophysical Research-Solid Earth, 1991, 96(B12): 19763-19780.
CrossRef Google scholar
Shearer P. M.. Seismic Imaging of Upper-Mantle Structure with New Evidence for a 520-km Discontinuity. Nature, 1990, 344(6262): 121-126.
CrossRef Google scholar
Sinogeikin S. V., Bass J. D.. Single-Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Physics of the Earth and Planetary Interiors, 2000, 120(1–2): 43-62.
CrossRef Google scholar
Sinogeikin S. V., Bass J. D.. Elasticity of Pyrope and Majorite-Pyrope Solid Solutions to High Temperatures. Earth and Planetary Science Letters, 2002, 203(1): 549-555.
CrossRef Google scholar
Stackhouse S., Brodholt J. P., Wookey J., . The Effect of Temperature on the Seismic Anisotropy of the Perovskite and Post-Perovskite Polymorphs of MgSiO3. Earth and Planetary Science Letters, 2004, 230(1–2): 1-10.
Wang Y., Perdew J. P.. Correlation Hole of the Spin-Polarized Electron-Gas, with Exact Small-Wave-Vector and High Density Scaling. Phy. Rev. B, 1991, 44(24): 13298-13307.
CrossRef Google scholar
Wang Y., Weidner D. J., Zhang J. Z., . Thermal Equation of State of Garnets along the Pyrope-Majorite Join. Physics of the Earth and Planetary Interiors, 1998, 105(1–2): 59-71.
CrossRef Google scholar
Zhang J., Herzberg C.. Melting of Pyrope, Mg3Al2Si3O12, at 7–16 GPa. American Mineralogist, 1994, 79(5–6): 497-503.

Accesses

Citations

Detail

Sections
Recommended

/