Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope

Li Li , Donald J. Weidner , John Brodholt , Dario Alfè , G. David Price

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 169 -175.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 169 -175. DOI: 10.1007/s12583-011-0169-6
Article

Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope

Author information +
History +
PDF

Abstract

We calculated thermo-elastic properties of pyrope (Mg3Al2Si3O12) at mantle pressures and temperatures using Ab initio molecular dynamic simulation. A third-order Birch-Murnaghan equation at a reference temperature of 2 000 K fits the calculations with bulk modulus, K 0=159.5 GPa, K 0′=4.3, V 0=785.89 Å3, Grüneisen parameter, γ 0=1.15, q=0.80, Anderson Grüneisen parameter δ T=3.76 and thermal expansion, α 0=2.93×10−5 K−1. Referenced to room temperature, where V 0=750.80 Å3, γ 0 and α 0 become 1.11 and 2.47×10−5 K−1. The elastic properties of pyrope are found to be nearly isotropic at transition zone conditions.

Keywords

AIMD / thermo-elasticity / pyrope / high pressure

Cite this article

Download citation ▾
Li Li, Donald J. Weidner, John Brodholt, Dario Alfè, G. David Price. Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope. Journal of Earth Science, 2011, 22(2): 169-175 DOI:10.1007/s12583-011-0169-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alfè D.. Ab Initio Molecular Dynamics, a Simple Algorithm for Charge Extrapolation. Computer Physics Communications, 1999, 118(1): 31-33.

[2]

Allen M. P., Tildesley D. J.. Computer Simulation of Liquids, 1997, New York: Oxford University Press 408

[3]

Bina C. R., Helffrich G. R.. Calculation of Elastic Properties from Thermodynamic Equation of State Principles. Annu. Rev. Earth Planet. Sci., 1992, 20: 527-552.

[4]

Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B, 1994, 50(24): 17953-17979.

[5]

Brown J. M., Shankland T. J.. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles. Geophys. J. R. Astr. Soc., 1981, 66(3): 579-596.

[6]

Chen G. L., Cooke J. A., Gwanmesia G. D., . Elastic Wave Velocities at Mg3Al2Si3O13—Pyrope Garnet to 10 GPa. American Mineralogist, 1999, 84(3): 384-388.

[7]

Conrad P. G., Zha C. S., Mao H. K., . The High-Pressure, Single-Crystal Elasticity of Pyrope, Grossular, and Andradite. American Mineralogist, 1999, 84(3): 374-383.

[8]

Deuss A., Woodhouse J.. Seismic Observations of Splitting of the Mid-transition Zone Discontinuity in Earth’s Mantle. Science, 2001, 294(5541): 354-357.

[9]

Fisher K. M., Wiens D. A.. The Depth Distribution of Mantle Anisotropy beneath the Tonga Subduction Zone. Earth and Planetary Science Letters, 1996, 142(1–2): 253-260.

[10]

Gossler J., Kind R.. Seismic Evidence for very Deep Roots of Continents. Earth and Planetary Science Letters, 1996, 138(1–4): 1-13.

[11]

Gu Y., Dziewonski A. M., Agee C. B.. Global De-correlation of the Topography of Transition Zone Discontinuities. Earth and Planetary Science Letters, 1998, 157(1–2): 57-67.

[12]

Gwanmesia G. D., Zhang J., Darling K., . Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1 000 °C. Physics of the Earth and Planetary Interiors, 2006, 155(3–4): 179-190.

[13]

Kresse G., Furthmüller J.. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mat. Sci., 1996, 6(1): 15-50.

[14]

Kresse G., Furthmüller J.. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B, 1996, 54(16): 11169-11186.

[15]

Leitner B. J., Weidner D. J., Liebermann R. C.. Elasticity of Single Crystal Pyrope and Implications for Garnet Solid Solution Series. Physics of the Earth and Planetary Interiors, 1980, 22(2): 111-121.

[16]

Li L., Weidner D. J.. Effect of Phase Transitions on Bulk Dispersion and Attenuation: Implications for the Earth. Nature, 2008, 454: 984-986.

[17]

Li L., Weidner D. J., Brodholt J., . Phase Stability of CaSiO3 Perovskite at High Pressure and Temperature: Insights from Ab Initio Molecular Dynamics. Physics of the Earth and Planetary Interiors, 2005, 155(3–4): 260-268.

[18]

Li L., Weidner D. J., Brodholt J., . Elasticity of Mg2SiO4 Ringwoodite at Mantle Conditions. Physics of the Earth and Planetary Interiors, 2006, 157(3–4): 181-187.

[19]

Li L., Weidner D. J., Brodholt J., . Elasticity of CaSiO3 Perovskite at High Pressure and High Temperature. Physics of the Earth and Planetary Interiors, 2006, 155(3–4): 249-259.

[20]

Li L., Weidner D. J., Brodholt J., . Ab Initio Molecular Dynamics Study of Elasticity of Akimotoite MgSiO3 at Mantle Conditions. Physics of the Earth and Planetary Interiors, 2009, 173(1–2): 115-120.

[21]

Mittal R., Chaplot S. L., Choudhury N.. Lattice Dynamics Calculations of the Phonon Spectra and Thermodynamic Properties of the Aluminosilicate Garnets Pyrope, Grossular, and Spessartine M3Al2Si3O12 (M=Mg, Ca, and Mn). Phys. Rev. B, 2001, 64 9 094302

[22]

Montagner J. P., Kennett B. L. N.. How to Reconcile Body-Wave and Normal Mode—Reference Earth Models. Geophys. J. Int., 1996, 125(1): 229-248.

[23]

Nye J. F.. Physical Properties of Crystals, 1957, Ely House, London: Oxford University Press

[24]

Oganov A. R., Brodholt J. P., Price G. D.. Ab Initio Elasticity and Thermal Equation of State of MgSiO3 Perovskite. Earth and Planetary Science Letters, 2001, 184(3–4): 555-560.

[25]

Oganov A. R., Brodholt J. P., Price G. D.. The Elastic Constants of MgSiO3 Perovskite at Pressures and Temperatures of the Earth’s Mantle. Nature, 2001, 411(6840): 934-937.

[26]

Pavese A.. Quasi-harmonic Computer Simulations of the Structural Behaviour and EOS of Pyrope at High Pressure and High Temperature. Phys. Chem. Minerals, 1999, 26(8): 649-657.

[27]

Perdew J. P., Chevary J. A., Vosko S. H., . Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B, 1992, 46(11): 6671-6687.

[28]

Revenaugh J., Jordan T. H.. The ScS Phase in the Reflection of S-Waves from the Core-Mantle Boundary. Journal of Geophysical Research-Solid Earth, 1991, 96(B12): 19763-19780.

[29]

Shearer P. M.. Seismic Imaging of Upper-Mantle Structure with New Evidence for a 520-km Discontinuity. Nature, 1990, 344(6262): 121-126.

[30]

Sinogeikin S. V., Bass J. D.. Single-Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Physics of the Earth and Planetary Interiors, 2000, 120(1–2): 43-62.

[31]

Sinogeikin S. V., Bass J. D.. Elasticity of Pyrope and Majorite-Pyrope Solid Solutions to High Temperatures. Earth and Planetary Science Letters, 2002, 203(1): 549-555.

[32]

Stackhouse S., Brodholt J. P., Wookey J., . The Effect of Temperature on the Seismic Anisotropy of the Perovskite and Post-Perovskite Polymorphs of MgSiO3. Earth and Planetary Science Letters, 2004, 230(1–2): 1-10.

[33]

Wang Y., Perdew J. P.. Correlation Hole of the Spin-Polarized Electron-Gas, with Exact Small-Wave-Vector and High Density Scaling. Phy. Rev. B, 1991, 44(24): 13298-13307.

[34]

Wang Y., Weidner D. J., Zhang J. Z., . Thermal Equation of State of Garnets along the Pyrope-Majorite Join. Physics of the Earth and Planetary Interiors, 1998, 105(1–2): 59-71.

[35]

Zhang J., Herzberg C.. Melting of Pyrope, Mg3Al2Si3O12, at 7–16 GPa. American Mineralogist, 1994, 79(5–6): 497-503.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/