Regional stress fields under Tibet from 3D global flow simulation

Siqi Zhang , H. L. Xing , David A. Yuen , Huai Zhang , Yaolin Shi

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 155 -159.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 155 -159. DOI: 10.1007/s12583-011-0167-8
Article

Regional stress fields under Tibet from 3D global flow simulation

Author information +
History +
PDF

Abstract

Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is not well understood due to the complex structure of Tibet and its surrounding area. In this study, a 3D global flow simulation with only viscous rheology is applied to studying the stress distribution in this area, and the interaction between Tibet and its surrounding areas is investigated. Finally, the possibility of combining regional modeling with global models is also discussed.

Keywords

Tibet / global flow / stress / simulation

Cite this article

Download citation ▾
Siqi Zhang, H. L. Xing, David A. Yuen, Huai Zhang, Yaolin Shi. Regional stress fields under Tibet from 3D global flow simulation. Journal of Earth Science, 2011, 22(2): 155-159 DOI:10.1007/s12583-011-0167-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai W. M., Vigny C., Ricard Y., . On the Origin of Deviatoric Stresses in the Lithosphere. Journal of Geophysical Research, 1992, 97(B8): 11729-11737.

[2]

Becker T. W.. On the Effect of Temperature and Strain-Rate Dependent Viscosity on Global Mantle Flow, Net Rotation, and Plate-Driving Forces. Geophysical Journal International, 2006, 167(2): 943-957.

[3]

CIG. http://www.geodynamics.org/

[4]

DeMets C., Gordon R. G., Argus D. F., . Current Plate Motions. Geophysical Journal International, 1990, 101(2): 425-478.

[5]

Fay N. P., Bennett R. A., Spinler J. C., . Small-Scale Upper Mantle Convection and Crustal Dynamics in Southern California. Geochemistry, Geophysics, Geosystems, 2008, 9 8 Q08006

[6]

Goes S., Govers R., Vacher P.. Shallow Mantle Temperatures under Europe from P and S Wave Tomography. Journal of Geophysical Research, 2000, 105(B5): 11153-11169.

[7]

Hager B. H., Clayton R. W.. Peltier W. R.. Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid. The Fluid Mechanics of Astrophysics and Geophysics, 1989, New York: Gordon and Breach Science Publishers 657 763

[8]

Liu M., Yang Y. Q.. Extensional Collapse of the Tibetan Plateau: Results of Three-Dimensional Finite Element Modeling. Journal of Geophysical Research, 2003, 108 B8 2361

[9]

Ritsema J., van Heijst H. J., Woodhouse J. H.. Complex Shear Wave Velocity Structure Imaged beneath Africa and Iceland. Science, 1999, 286(5446): 1925-1928.

[10]

Spasojevic S., Liu L. J., Gurnis M.. Adjoint Models of Mantle Convection with Seismic, Plate Motion, and Stratigraphic Constraints: North America since the Late Cretaceous. Geochemistry, Geophysics, Geosystems, 2009, 10 5 Q05W02

[11]

Steinberger B., Schmeling H., Marquart G.. Large-Scale Lithospheric Stress Field and Topography Induced by Global Mantle Circulation. Earth and Planetary Science Letters, 2001, 186(1): 75-91.

[12]

Tan E., Choi E., Thoutireddy P., . GeoFramework: Coupling Multiple Models of Mantle Convection within a Computational Framework. Geochemistry, Geophysics, Geosystems, 2006, 7 6 Q06001

[13]

Trampert J., Vacher P., Vlaar N.. Sensitivities of Seismic Velocities to Temperature, Pressure and Composition in the Lower Mantle. Physics of the Earth and Planetary Interiors, 2001, 124(3–4): 255-267.

[14]

Turcotte D. L., Schubert G.. Geodynamics, 2002, Cambridge: Cambridge University Press 188

[15]

Wang Q., Zhang P. Z., Freymueller J. T., . Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 2001, 294(5542): 574-577.

[16]

Zhong S. J., McNamara A., Tan E., . A Benchmark Study on Mantle Convection in a 3-D Spherical Shell Using CitcomS. Geochemistry, Geophysics, Geosystems, 2008, 9 10 Q10017

[17]

Zhong S. J., Zuber M. T., Moresi L., . Role of Temperature-Dependent Viscosity and Surface Plates in Spherical Shell Models of Mantle Convection. Journal of Geophysical Research, 2000, 105(B5): 11063-11082.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/