Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model

Guizhi Zhu , Taras Gerya , David A. Yuen

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 137 -142.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (2) : 137 -142. DOI: 10.1007/s12583-011-0165-x
Article

Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model

Author information +
History +
PDF

Abstract

Dehydration of the subducting slab favors the melting of the surrounding mantle. Water content and melt evolution atop a spontaneously retreating subducting slab are reported in a three-dimensional (3-D) model. We find that fluids, including water and melts in the rocks, vary substantially along the trench, which cannot be found in two-dimensional (2-D) models. Their maxima along the subducting slab are mainly located at about 50 to 70 and 120 to 140 km. Volumetric melt production rate changes spatially and episodically atop the slab, which may reflect the intensity and variations of volcanoes.

Keywords

subduction / water and melt / three-dimensional model

Cite this article

Download citation ▾
Guizhi Zhu, Taras Gerya, David A. Yuen. Melt evolution above a spontaneously retreating subducting slab in a three-dimensional model. Journal of Earth Science, 2011, 22(2): 137-142 DOI:10.1007/s12583-011-0165-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arcay D., Tric E., Doin M. P.. Numerical Simulations of Subduction Zones: Effect of Slab Dehydration on the Mantle Wedge Dynamics. Phys. Earth Planet. Inter., 2005, 149(1–2): 133-153.

[2]

Blacic J. D., . Heard H. C., Borg I. Y., Carter N. L., . Effects of Water on the Experimental Deformation of Olivine. Flow and Fracture of Rocks, 1972, Washington DC: American Geophysical Union 109 115

[3]

Conder J. A., Wiens D. A.. Rapid Mantle Flow beneath the Tonga Volcanic Arc. Earth Planet. Sci. Lett., 2007, 264(1–2): 299-307.

[4]

de Ronde C. E. J., Baker E. T., Massoth G. J., . Submarine Hydrothermal Activity along the Mid-Kermadec Arc, New Zealand: Large-Scale Effects on Venting. Geochem., Geophys., Geosyst., 2007, 8 Q07007

[5]

Gerya T. V.. Introduction to Numerical Geodynamic Modelling, 2010, Cambridge: Cambridge University Press

[6]

Gerya T. V., Connolly J. A. D., Yuen D. A., . Seismic Implications of Mantle Wedge Plumes. Phys. Earth Planet. Int., 2006, 156: 59-74.

[7]

Gerya T. V., Connolly J. A. D., Yuen D. A.. Why is Terrestrial Subduction One-Sided?. Geology, 2008, 36: 43-46.

[8]

Gerya T. V., Stoeckhert B., Perchuk A. L.. Exhumation of High-Pressure Metamorphic Rocks in a Subduction Channel: A Numerical Simulation. Tectonics, 2002, 21 6 1056

[9]

Gerya T. V., Yuen D. A.. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Phys. Earth Planet. Inter., 2003, 140(4): 293-318.

[10]

Gerya T. V., Yuen D. A.. Rayleigh-Taylor Instabilities from Hydration and Melting Propel ‘Cold Plumes’ at Subduction Zones. Earth Planet. Sci. Lett., 2003, 212(1–2): 47-62.

[11]

Gorczyk W., Gerya T. V., Connolly J. A. D., . Growth and Mixing Dynamics of Mantle Wedge Plumes. Geology, 2007, 35: 587-590.

[12]

Grove T. L., Chatterjee N., Parman S. W., . The Influence of H2O on Mantle Wedge Melting. Earth Planet. Sci. Lett., 2006, 249(1–2): 74-89.

[13]

Hall P. S., Kincaid C.. Diapiric Flow at Subduction Zones: A Recipe for Rapid Transport. Science, 2001, 292(5526): 2472-2475.

[14]

Hebert L. B., Antoshechkina P., Asimow P., . Emergence of a Low-Viscosity Channel in Subduction Zones through the Coupling of Mantle Flow and Thermodynamics. Earth Planet. Sci. Lett., 2009, 278(3–4): 243-256.

[15]

Hirth G., Kohlstedt D. L.. Eiler J. E.. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Inside the Subduction Factory, 2003, Washington DC: American Geophysical Union 83 105

[16]

Honda S., Gerya T. V., Zhu G.. A Simple Three-Dimensional Model of Thermochemical Convection in the Mantle Wedge. Earth Planet. Sci. Lett., 2010, 290(3–4): 311-318.

[17]

Iwamori H.. Transportation of H2O and Melting in Subduction Zones. Earth Planet. Sci. Lett., 1998, 160(1–2): 65-80.

[18]

Karato S. I.. Deformation of Earth Materials: Introduction to the Rheology of the Solid Earth, 2008, Cambridge: Cambridge University Press 463

[19]

Karato S. I.. Rheology of the Earth’s Mantle: A Historical Review. Gondwana Research, 2010, 18(1): 17-45.

[20]

Karato S. I., Jung H. Y.. Water, Partial Melting and the Origin of Seismic Low Velocity and High Attenuation Zone in the Upper Mantle. Earth Planet. Sci. Lett., 1998, 157(3–4): 193-207.

[21]

Karato S. I., Jung H. Y.. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Poilosophical Magazine A, 2003, 83(3): 401-414.

[22]

Kimura J. I., Yoshida T.. Contributions of Slab Fluid, Mantle Wedge and Crust to the Origin of Quaternary Lavas in the NE Japan Arc. J. Petrol., 2006, 47(11): 2185-2232.

[23]

Mysen B. O., Boettcher A. L.. Melting of a Hydrous Mantle: II. Geochemistry of Crystals and Liquids Formed by Anatexis of Mantle Peridotite at High Pressures and High Temperatures as a Function of Controlled Activities of Water, Hydrogen, and Carbon Dioxide. J. Petrol., 1975, 16(3): 549-593.

[24]

Nikolaeva K., Gerya T. V., Connolly J. A. D.. Numerical Modelling of Crustal Growth in Intraoceanic Volcanic Arcs. Phys. Earth Planet. Inter., 2008, 171(1–4): 336-356.

[25]

Peacock S. M.. Fluid Processes in Subduction Zones. Science, 1990, 248(4953): 329-337.

[26]

Plank T., Cooper L. B., Manning C. E.. Emerging Geothermometers for Estimating Slab Surface Temperatures. Nature Geoscience, 2009, 2(9): 611-615.

[27]

Ranalli G.. Rheology of the Earth, 1995 2nd ed. London: Chapman and Hall 413

[28]

Stern R. J.. Subduction Zones. Rev. Geophys., 2002, 40 4 1012

[29]

Stern R. J.. Subduction Initiation: Spontaneous and Induced. Earth Planet. Sci. Lett., 2004, 226(3–4): 275-292.

[30]

Wyss M., Hasegawa A., Nakajima J.. Source and Path of Magma for Volcanoes in the Subduction Zone of Northeastern Japan. Geophys. Res. Lett., 2001, 28(9): 1819-1822.

[31]

Zhao D.. Seismological Structure of Subduction Zones and Its Implications for Arc Magmatism and Dynamics. Phys. Earth Planet. Inter., 2001, 127(1–4): 197-214.

[32]

Zhao D., Mishra O. P., Sanda R.. Influence of Fluids and Magma on Earthquakes: Seismological Evidence. Phys. Earth Planet. Inter., 2002, 132(4): 249-267.

[33]

Zhao D., Wang Z., Umino N., . Mapping the Mantle Wedge and Interpolate Thrust Zone of the Northeast Japan Arc. Tectonophysics, 2009, 467(1–4): 89-106.

[34]

Zhu G., Gerya T. V., Yuen D. A., . Three-Dimensional Dynamics of Hydrous Thermal-Chemical Plumes in Oceanic Subduction Zones. Geochem., Geophys., Geosyst., 2009, 10 Q11006

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/