Rayleigh wave group velocity distribution in Ningxia

Hongyi Li , Xin Liu , Xinfu Li , Juqin Sheng , Xinhua Cai , Tongli Wang

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (1) : 117 -123.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (1) : 117 -123. DOI: 10.1007/s12583-011-0162-0
Article

Rayleigh wave group velocity distribution in Ningxia

Author information +
History +
PDF

Abstract

In this article, seven months ambient noise data and 10 events recorded at seven digital stations from the Ningxia (宁夏) regional seismic network and 5 500-t controlled source explosion data recorded by 15 temporary and 7 permanent seismic stations are used to measure dispersion curves of fundamental mode Rayleigh waves. The study region was divided into grids with 0.1°×0.1°; group velocity distributions of Rayleigh waves from 6–22 s were determined with the Occam’s inversion technique. These velocity distribution maps show the lateral velocity variations in the study area, and the velocity structures are correlated with surface geology and tectonic units. The Yinchuan (银川) basin is clearly featured with low velocities, and the Helan (贺兰) Mountain and southern mountain areas are revealed with high velocities.

Keywords

Rayleigh wave / group velocity / ambient noise / explosion

Cite this article

Download citation ▾
Hongyi Li, Xin Liu, Xinfu Li, Juqin Sheng, Xinhua Cai, Tongli Wang. Rayleigh wave group velocity distribution in Ningxia. Journal of Earth Science, 2011, 22(1): 117-123 DOI:10.1007/s12583-011-0162-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bensen G. D., Ritzwoller M. H., Shapiro N. M.. Broadband Ambient Noise Surface Wave Tomography across the United States. J. Geophys. Res., 2008, 113 B05306

[2]

Campillo M., Paul A.. Long-Range Correlations in the Diffuse Seismic Coda. Science, 2003, 299(5606): 547-549.

[3]

Constable S. C., Parker R. L., Constable C. G.. Occam’s Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data. Geophysics, 1987, 52(3): 289-300.

[4]

Derode A., Larose E., Tanter E., . Recovering the Green’s Function from Field-Field Correlations in an Open Scattering Medium. Journal of the Acoustical Society of America, 2003, 113(6): 2973-2976.

[5]

Dziewonski A., Bloch S., Landisman M.. A Technique for the Analysis of Transient Seismic Signals. Bulletin of the Seismological Society of America, 1969, 59: 427-444.

[6]

Herrmann R. B.. Some Aspects of Band-Pass Filtering of Surface Waves. Bulletin of the Seismological Society of America, 1973, 63: 663-671.

[7]

Jin Y. L., Yang M. Z., Zhao W. M., . Inversion of 3-D Crustal P-Wave Velocity Structure in Ningxia and Its Neighborhood by Using Direct, Reflected and Refracted Waves. Acta Seismologica Sinica, 1999, 12(4): 436-446.

[8]

Levshin A. L., Yanovskaya T. B., Lander A. V., . Seismic Surface Waves in a Laterally Inhomogeneous Earth, 1989, Norwell, Mass: Kluwer Academic Publishers

[9]

Li H. Y., Su W., Wang C. Y., . Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 2009, 282(1–4): 201-211.

[10]

Li S. L., Zhang X. K., Zhang C. K., . A Preliminary Study on the Crustal Velocity Structure of Maqin-Lanzhou-Jingbian, China, by Means of Deep Seismic Sounding Profile. Acta Geophysica Sinica, 2002, 45(2): 210-217.

[11]

Lin F. C., Ritzwoller M. H., Townend J., . Ambient Noise Rayleigh Wave Tomography of New Zealand. Geophysical Journal International, 2007, 170(2): 649-666.

[12]

Sabra K. G., Gerstoft P., Roux P., . Surface Wave Tomography from Microseism in Southern California. Geophysical Research Letters, 2005, 32 L14311

[13]

Shapiro N. M., Campillo M.. Emergence of Broadband Rayleigh Waves from Correlations of the Ambient Seismic Noise. Geophysical Research Letters, 2004, 31 L07614

[14]

Shapiro N. M., Campillo M., Stehly L., . High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 2005, 307(5715): 1615-1618.

[15]

Snieder, R., 2004. Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E 69(4) 046610. doi:10.1103/PhysRevE.69.046610

[16]

The Committee Compiled Earth Science Profiles, SSB The Earth Science Profile Extending from Feng County, Shanghai, to Alxa Zuoqi County, Inner Mongolia Autonomous Region, 1992, Beijing: Seismological Press

[17]

Wapenaar K.. Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 2004, 93 254301

[18]

Weaver R. L.. Information from Seismic Noise. Science, 2005, 307(5715): 1568-1569.

[19]

Weaver R. L., Lobkis O. L.. Diffuse Fields in Open System and the Emergence of the Green’s Function. Journal of the Acoustical Society of America, 2004, 116(5): 2731-2734.

[20]

Yang Y. J., Ritzwoller M. H., Levshin A. L., . Ambient Noise Rayleigh Wave Tomography across Europe. Geophysical Journal International, 2007, 168(1): 259-274.

[21]

Yao H. J., Beghein C., van der Hilst R. D.. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis: II, Crustal and Upper-Mantle Structure. Geophysical Journal International, 2008, 173(1): 205-219.

[22]

Yin A., Harrison T. M.. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-80.

[23]

Zhang J. L., Shi L. T., Wei P. S., . Deep Crustal Structure and Hydrocarbon Accumulation in Ordos Basin. Xinjiang Petroleum Geology, 2009, 30(2): 272-278.

[24]

Zhao B. M., Xie X. F., Chai C. Z., . Imaging the Graben Structure in the Deep Basin with a Microtremor Profile Crossing the Yinchuan City. Journal of Geophysics Engineering, 2007, 4: 293-300.

[25]

Zheng S., Sun X., Song X., . Surface Wave Tomography of China from Ambient Seismic Noise Correlation. Geochem. Geophys. Geosyst., 2008, 9 Q05020

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/