Complex effective relative permittivity of soil samples from the taunus region (Germany)

Katja Lauer, Christian Albrecht, Christina Salat, Peter Felix-Henningsen

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (6) : 961-967.

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (6) : 961-967. DOI: 10.1007/s12583-010-0149-2
Article

Complex effective relative permittivity of soil samples from the taunus region (Germany)

Author information +
History +

Abstract

The most important parameter affecting ground-penetrating radar (GPR) measurements is the complex effective relative permittivity ɛr,eff * because it controls the propagation velocity and the reflection of GPR pulses. Knowing ɛr,eff * of soils passed through by electromagnetic waves increases accuracy in soil thickness and interface identification. Complex effective relative permittivity ɛr,eff *r,eff jɛr,eff * of 25 soil samples with textures ranging from loamy sand to silty clay was measured using the two-electrode parallelplate method. The measurements were conducted at defined water contents for frequencies from 1 MHz to 3 GHz. The results confirm the frequency dependence of ɛr,eff * and show that the dielectric behavior of soil-water mixtures is a function of water content. Applying the experimental data of this study with predictions based on the empirical model by Topp et al. (1980), we find that Topp et al.’s curve tends to underestimate the real part of ɛr,eff * measured. Along with frequency and water content, soil texture and organic matter affect soil permittivity. Moreover, the real part of ɛr,eff * increases at higher dry bulk densities. Output from our calibration model enables us to predict ɛr,eff * for the soil samples which were tested under the actual in situ soil water content. This results in high accuracy of soil thickness prediction.

Keywords

ground-penetrating radar (GPR) / complex effective relative permittivity / soil sample

Cite this article

Download citation ▾
Katja Lauer, Christian Albrecht, Christina Salat, Peter Felix-Henningsen. Complex effective relative permittivity of soil samples from the taunus region (Germany). Journal of Earth Science, 2010, 21(6): 961‒967 https://doi.org/10.1007/s12583-010-0149-2

References

Blume H. P., Brümmer G. W., Schwertmann U., . Scheffer/Schachtschabel, Lehrbuch der Bodenkunde, 2010, Heidelberg: Spektrum Akademischer Verlag 569
CrossRef Google scholar
Daniels D. J.. Ground Penetrating Radar, 2004 2nd Edition London: The Institution of Electrical Engineers 726
DIN ISO 11265 Bodenbeschaffenheit-Bestimmung der Spezifischen Elektrischen Leitfähigkeit, 1997, Berlin: Deutsches Institut für Normung e. V.
Gerber R.. Erfassung der Mächtigkeit und Verbreitung Periglaziärer Lagen im Lahn-Dill-Bergland (Rheinisches Schiefergebirge), 2009, Giessen: University of Giessen
Hallikainen M. T., Ulaby F. T., Dobson M. C., . Microwave Dielectric Behavior of Wet Soil, Part I: Empirical Models and Experimental Observations. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(1): 25-34.
CrossRef Google scholar
Hoekstra P., Delaney A.. Dielectric Properties of Soils at UHF and Microwave Frequencies. Journal of Geophysical Research, 1974, 79(11): 1699-1708.
CrossRef Google scholar
Huisman J. A., Hubbard S. S., Redman J. D., . Measuring Soil Water Content with Ground Penetrating Radar: A Review. Vadose Zone Journal, 2003, 2(4): 476-491.
Inman D. J., Freeland R. S., Yoder R. E., . Evaluating GPR and EMI for Morphological Studies of Loessial Soils. Soil Science, 2001, 166(9): 622-630.
CrossRef Google scholar
Knoll M. D.. A Petrophysical Basis for Ground Penetrating Radar and very Early Time Electromagnetics: Electrical Properties of Sand-Clay Mixtures: [Dissertaion], 1996, Vancouver: University of British Columbia
Kuntze H.. Kuntze H., Roeschmann G., Schwerdtfeger G.. Wasserbindung. Bodenkunde, 1994, Stuttgart: Eugen Ulmer Verlag 162 168
Peplinski N. R., Ulaby F. T., Dobson M. C.. Dielectric Properties of Soils in the 0.3-1.3-GHz Range. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3): 803-807.
CrossRef Google scholar
Saarenketo T.. Electrical Properties of Water in Clay and Silty Soils. Journal of Applied Geophysics, 1998, 40(1–3): 73-88.
CrossRef Google scholar
Salat C., Junge A.. Dielectric Permittivity of Fine-Grained Fractions of Soil Samples from Eastern Spain at 200 MHz. Geophysics, 2010, 75(1): J1-J9.
CrossRef Google scholar
Schlichting E., Blume H. P., Stahr K.. Bodenkundliches Praktikum, 1995, Berlin: Blackwell-Wissenschaftsverlag 295
Shang J. Q., Scholte J. W., Rowe R. K.. Multiple Linear Regression of Complex Permittivity of a Till at Frequency Range from 200 MHz to 400 MHz. Subsurface Sensing Technologies and Applications, 2000, 1(3): 337-35.
CrossRef Google scholar
Topp G. C., Davis J. L., Annan A. P.. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources Research, 1980, 16(3): 574-582.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/