Experimental investigation of the creep behavior of garnet at high temperatures and pressures

Shenghua Mei, Ayako M. Suzuki, David L. Kohlstedt, Lili Xu

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 532-540.

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 532-540. DOI: 10.1007/s12583-010-0127-8
Article

Experimental investigation of the creep behavior of garnet at high temperatures and pressures

Author information +
History +

Abstract

To provide constraints on the rheological properties of garnet, we have experimentally investigated the creep behavior of garnet at high pressures and temperatures using a deformation-DIA. Samples were cold-pressed from a garnet powder and deformed at constant displacement rates ranging from 1.1×10−5 to 2.6×10−5 s−1 at high temperatures (1 273–1 473 K) and high pressures (2.4–4.1 GPa). Differential stress and pressure were measured using X-ray diffraction techniques based on the elastic strain of various lattice planes as a function of orientation with respect to the applied stress field. The plastic strain of a deforming sample was monitored in-situ through a series of radiographs. Our results provide a measure of the dependence of creep rate of garnet on the temperature with an activation energy of ∼280 kJ/mol and on pressure with an activation volume of ∼10×10−6 m3/mol. The flow behavior of garnet quantified by this study provides the basis for modeling geodynamic processes occurring within subducted lithosphere.

Keywords

garnet / creep / lithosphere / geodynamics / high pressure

Cite this article

Download citation ▾
Shenghua Mei, Ayako M. Suzuki, David L. Kohlstedt, Lili Xu. Experimental investigation of the creep behavior of garnet at high temperatures and pressures. Journal of Earth Science, 2010, 21(5): 532‒540 https://doi.org/10.1007/s12583-010-0127-8

References

Anderson O. L., Isaak D. L., Oda H.. Thermoelastic Parameters for Six Minerals at High Temperature. J. Geophys. Res., 1991, 96(B11): 18037-18046.
CrossRef Google scholar
Ando J. I., Fujino K., Takeshita T.. Dislocation Microstructures in Naturally Deformed Silicate Garnets. Phys. Earth Planet. Inter., 1993, 80(3–4): 105-116.
CrossRef Google scholar
Birch F.. Finite Elastic Strain of Cubic Crystals. Phys. Rev., 1947, 71: 809-824.
CrossRef Google scholar
Chen, S., Hiraga, T., Kohlstedt, D. L., 2006. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. J. Geophys. Res., 111(B8), doi:10.1029/2005JB003885
Cordier P., Liebermann R. C., Raterron P., . TEM Study of Silicate Garnet Deformed in a Multi-anvil High-Pressure Apparatus. Petrol. Geochem., 1996, 8 Suppl. 1
Durham W. B., Mei S. H., Kohlstedt D. L., . New Measurements of Activation Volume in Olivine under Anhydrous Conditions. Phys. Earth Planet. Inter., 2009, 172(1–2): 67-73.
CrossRef Google scholar
Fan D. W., Zhou W. G., Liu C. Q., . The thermal Equation of State of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 Almandine. Mineralogical Magazine, 2009, 73: 95-102.
CrossRef Google scholar
Gasparik T.. Phase Diagrams for Geoscientists, an Atlas of the Earth’s Interior, 2003, New York: Springer-Verlag 462
Irifune T., Ringwood A. E.. Manghnani M. H., Syono Y.. Phase Transformations in Primitive MORB and Pyrolite Compositions to 25 GPa and Some Geophysical Implications. High Pressure Research in Geophysics, 1987, Washington D.C.: American Geophysical Union 231 242
Irifune T., Ringwood A. E.. Phase Transformations in Subducted Oceanic Crust and Buoyancy Relationships at Depths of 600–800 km in the Mantle. Earth Planet. Sci. Lett., 1993, 117(1–2): 101-110.
CrossRef Google scholar
Jin Z. M., Zhang J. F., Green H. W., . Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 2001, 29: 667-670.
CrossRef Google scholar
Karato S. I.. Theory of Lattice Strain in a Material Undergoing Plastic Deformation: Basic Formulation and Applications to a Cubic Crystal. Phys. Rev. B, 2009, 79 214106
CrossRef Google scholar
Karato S. I., Wang Z. C., Fujino K., . High Creep Strength of Garnets and Its Bearing on the Dynamics and Chemical Evolution of the Mantle Transition Zone. Geodynamics Workshop in the Czech Republic, 1993, 5 6 581
Karato S. I., Wang Z. C., Liu B. F., . Plastic Deformation of Garnets: Systematics and Implications for the Rheology of the Mantle Transition Zone. Earth Planet. Sci. Lett., 1995, 130(1–4): 13-30.
CrossRef Google scholar
Katayama I., Karato S. I.. Effects of Water and Iron Content on the Rheological Contrast between Garnet and Olivine. Phys. Earth Planet. Inter., 2008, 166(1–2): 57-66.
Kleinschrodt R., Duyster J. P.. HT-Deformation of Garnet: An EBSD Study on Granulites from Sri Lanka, India and the Ivrea Zone. J. Struct. Geol., 2002, 24(11): 1829-1844.
CrossRef Google scholar
Li L., Weidner D., Raterron P., . Stress Measurements of Deforming Olivine at High Pressure. Phys. Earth Planet. Inter., 2004, 143–144: 357-367.
CrossRef Google scholar
Li L., Long H. B., Raterron P., . Plastic Flow of Pyrope at Mantle Pressure and Temperature. Am. Mineral., 2006, 91: 517-525.
CrossRef Google scholar
Mainprice D., Bascou J., Cordier P., . Crystal Preferred Orientation of Garnet: Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. J. Struct. Geol., 2004, 26(11): 2089-2102.
CrossRef Google scholar
Mei S. H., Kohlstedt D. L., Durham W. B., . Experimental Investigation of the Creep Behavior of MgO at High Pressures. Phys. Earth Planet. Inter., 2008, 170(3–4): 170-175.
CrossRef Google scholar
Mei, S. H., Suzuki, A. M., Kohlstedt, D. L., et al., 2010. Experimental Constraints on the Strength of the Lithospheric Mantle. J. Geophys. Res., doi: 10.1029/2009JB006873
Merkel S.. X-Ray Diffraction Evaluation of Stress in High Pressure Deformation Experiments. J. Phys. Condens. Matter, 2006, 18(25): S949-S962.
CrossRef Google scholar
Merkel S., Yagi T.. Effect of Lattice Preferred Orientation on Lattice Strains in Polycrystalline Materials Deformed under High Pressure: Application to hcp-Co. J. Phys. Chem. Solid., 2006, 67(9–10): 2119-2131.
CrossRef Google scholar
Murnaghan F. D.. Finite Deformations of an Elastic Solid. Am. J. Math., 1937, 59: 235-260.
CrossRef Google scholar
Paterson M. S., Weaver C. W.. Deformation of Polycrystalline MgO under Pressure. J. Am. Ceram. Soc., 1970, 53: 463-471.
CrossRef Google scholar
Rabier J., Garem H., Veyssière P.. Transmission Electron Microscopy Determinations of Dislocation Burgers Vectors in Plastically Deformed Yttrium Iron Garnet Single Crystals. J. Appl. Phys., 1976, 47: 4755-4758.
CrossRef Google scholar
Ringwood A. E.. Composition and Petrology of the Earth’s Mantle, 1975, New York: McGraw-Hill 618
Ringwood A. E.. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochim. Cosmochim. Acta, 1991, 55(8): 2083-2110.
CrossRef Google scholar
Singh A. K.. The Lattice Strain in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device. J. Appl. Phys., 1993, 73(9): 4278-4286.
CrossRef Google scholar
Singh A. K., Balasingh C., Mao H. K., . Analysis of Lattice Strains Measured under Nonhydrostatic Pressure. J. Appl. Phys., 1998, 83(12): 7567-7575.
CrossRef Google scholar
Smith B. K.. Plastic Deformation of Garnets: Mechanical Behavior and Associated Microstructures: [Dissertation], 1982, Berkeley: Univ. California 197
Voegele V., Cordier P., Sautter V., . Plastic Deformation of Silicate Garnets; II, Deformation Microstructures in Natural Samples. Phys. Earth Planet. Inter., 1998, 108(4): 319-338.
CrossRef Google scholar
Wang Y. B., Durham W. B., Getting I. C., . The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressure up to 15 GPa. Rev. Sci. Inst., 2003, 74: 3002-3011.
CrossRef Google scholar
Wang Z., Karato S. I., Fujino K.. High Temperature Creep of Single Crystal Gadolinium Gallium Garnet. Phys. Chem. Min., 1996, 23(2): 73-80.
CrossRef Google scholar
Wang Z. C., Ji S. C.. Deformation of Silicate Garnets: Brittle-Ductile Transition and Its Geological Implications. Canad. Mineral., 1999, 37: 525-541.
CrossRef Google scholar
Webb S. L.. The Elasticity of the Upper Mantle Orthosilicates Olivine and Garnet to 3 GPa. Phys. Chem. Minerals, 1989, 16(7): 684-692.
CrossRef Google scholar
Weidner D. J.. Saxena S. K.. Mantle Model Based on Measured Physical Properties of Minerals. Chemistry and Physics of Terrestrial Planets, 1986, New York: Springer 251 274
Weidner D. J., Wang Y. B., Vaughan M. T.. Yield Strength at High Pressure and Temperature. Geophys. Res. Lett., 1994, 21(9): 753-756.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/