Experimental investigation of the creep behavior of garnet at high temperatures and pressures

Shenghua Mei , Ayako M. Suzuki , David L. Kohlstedt , Lili Xu

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 532 -540.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 532 -540. DOI: 10.1007/s12583-010-0127-8
Article

Experimental investigation of the creep behavior of garnet at high temperatures and pressures

Author information +
History +
PDF

Abstract

To provide constraints on the rheological properties of garnet, we have experimentally investigated the creep behavior of garnet at high pressures and temperatures using a deformation-DIA. Samples were cold-pressed from a garnet powder and deformed at constant displacement rates ranging from 1.1×10−5 to 2.6×10−5 s−1 at high temperatures (1 273–1 473 K) and high pressures (2.4–4.1 GPa). Differential stress and pressure were measured using X-ray diffraction techniques based on the elastic strain of various lattice planes as a function of orientation with respect to the applied stress field. The plastic strain of a deforming sample was monitored in-situ through a series of radiographs. Our results provide a measure of the dependence of creep rate of garnet on the temperature with an activation energy of ∼280 kJ/mol and on pressure with an activation volume of ∼10×10−6 m3/mol. The flow behavior of garnet quantified by this study provides the basis for modeling geodynamic processes occurring within subducted lithosphere.

Keywords

garnet / creep / lithosphere / geodynamics / high pressure

Cite this article

Download citation ▾
Shenghua Mei, Ayako M. Suzuki, David L. Kohlstedt, Lili Xu. Experimental investigation of the creep behavior of garnet at high temperatures and pressures. Journal of Earth Science, 2010, 21(5): 532-540 DOI:10.1007/s12583-010-0127-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson O. L., Isaak D. L., Oda H.. Thermoelastic Parameters for Six Minerals at High Temperature. J. Geophys. Res., 1991, 96(B11): 18037-18046.

[2]

Ando J. I., Fujino K., Takeshita T.. Dislocation Microstructures in Naturally Deformed Silicate Garnets. Phys. Earth Planet. Inter., 1993, 80(3–4): 105-116.

[3]

Birch F.. Finite Elastic Strain of Cubic Crystals. Phys. Rev., 1947, 71: 809-824.

[4]

Chen, S., Hiraga, T., Kohlstedt, D. L., 2006. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. J. Geophys. Res., 111(B8), doi:10.1029/2005JB003885

[5]

Cordier P., Liebermann R. C., Raterron P., . TEM Study of Silicate Garnet Deformed in a Multi-anvil High-Pressure Apparatus. Petrol. Geochem., 1996, 8 Suppl. 1

[6]

Durham W. B., Mei S. H., Kohlstedt D. L., . New Measurements of Activation Volume in Olivine under Anhydrous Conditions. Phys. Earth Planet. Inter., 2009, 172(1–2): 67-73.

[7]

Fan D. W., Zhou W. G., Liu C. Q., . The thermal Equation of State of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 Almandine. Mineralogical Magazine, 2009, 73: 95-102.

[8]

Gasparik T.. Phase Diagrams for Geoscientists, an Atlas of the Earth’s Interior, 2003, New York: Springer-Verlag 462

[9]

Irifune T., Ringwood A. E.. Manghnani M. H., Syono Y.. Phase Transformations in Primitive MORB and Pyrolite Compositions to 25 GPa and Some Geophysical Implications. High Pressure Research in Geophysics, 1987, Washington D.C.: American Geophysical Union 231 242

[10]

Irifune T., Ringwood A. E.. Phase Transformations in Subducted Oceanic Crust and Buoyancy Relationships at Depths of 600–800 km in the Mantle. Earth Planet. Sci. Lett., 1993, 117(1–2): 101-110.

[11]

Jin Z. M., Zhang J. F., Green H. W., . Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 2001, 29: 667-670.

[12]

Karato S. I.. Theory of Lattice Strain in a Material Undergoing Plastic Deformation: Basic Formulation and Applications to a Cubic Crystal. Phys. Rev. B, 2009, 79 214106

[13]

Karato S. I., Wang Z. C., Fujino K., . High Creep Strength of Garnets and Its Bearing on the Dynamics and Chemical Evolution of the Mantle Transition Zone. Geodynamics Workshop in the Czech Republic, 1993, 5 6 581

[14]

Karato S. I., Wang Z. C., Liu B. F., . Plastic Deformation of Garnets: Systematics and Implications for the Rheology of the Mantle Transition Zone. Earth Planet. Sci. Lett., 1995, 130(1–4): 13-30.

[15]

Katayama I., Karato S. I.. Effects of Water and Iron Content on the Rheological Contrast between Garnet and Olivine. Phys. Earth Planet. Inter., 2008, 166(1–2): 57-66.

[16]

Kleinschrodt R., Duyster J. P.. HT-Deformation of Garnet: An EBSD Study on Granulites from Sri Lanka, India and the Ivrea Zone. J. Struct. Geol., 2002, 24(11): 1829-1844.

[17]

Li L., Weidner D., Raterron P., . Stress Measurements of Deforming Olivine at High Pressure. Phys. Earth Planet. Inter., 2004, 143–144: 357-367.

[18]

Li L., Long H. B., Raterron P., . Plastic Flow of Pyrope at Mantle Pressure and Temperature. Am. Mineral., 2006, 91: 517-525.

[19]

Mainprice D., Bascou J., Cordier P., . Crystal Preferred Orientation of Garnet: Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. J. Struct. Geol., 2004, 26(11): 2089-2102.

[20]

Mei S. H., Kohlstedt D. L., Durham W. B., . Experimental Investigation of the Creep Behavior of MgO at High Pressures. Phys. Earth Planet. Inter., 2008, 170(3–4): 170-175.

[21]

Mei, S. H., Suzuki, A. M., Kohlstedt, D. L., et al., 2010. Experimental Constraints on the Strength of the Lithospheric Mantle. J. Geophys. Res., doi: 10.1029/2009JB006873

[22]

Merkel S.. X-Ray Diffraction Evaluation of Stress in High Pressure Deformation Experiments. J. Phys. Condens. Matter, 2006, 18(25): S949-S962.

[23]

Merkel S., Yagi T.. Effect of Lattice Preferred Orientation on Lattice Strains in Polycrystalline Materials Deformed under High Pressure: Application to hcp-Co. J. Phys. Chem. Solid., 2006, 67(9–10): 2119-2131.

[24]

Murnaghan F. D.. Finite Deformations of an Elastic Solid. Am. J. Math., 1937, 59: 235-260.

[25]

Paterson M. S., Weaver C. W.. Deformation of Polycrystalline MgO under Pressure. J. Am. Ceram. Soc., 1970, 53: 463-471.

[26]

Rabier J., Garem H., Veyssière P.. Transmission Electron Microscopy Determinations of Dislocation Burgers Vectors in Plastically Deformed Yttrium Iron Garnet Single Crystals. J. Appl. Phys., 1976, 47: 4755-4758.

[27]

Ringwood A. E.. Composition and Petrology of the Earth’s Mantle, 1975, New York: McGraw-Hill 618

[28]

Ringwood A. E.. Phase Transformations and Their Bearing on the Constitution and Dynamics of the Mantle. Geochim. Cosmochim. Acta, 1991, 55(8): 2083-2110.

[29]

Singh A. K.. The Lattice Strain in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device. J. Appl. Phys., 1993, 73(9): 4278-4286.

[30]

Singh A. K., Balasingh C., Mao H. K., . Analysis of Lattice Strains Measured under Nonhydrostatic Pressure. J. Appl. Phys., 1998, 83(12): 7567-7575.

[31]

Smith B. K.. Plastic Deformation of Garnets: Mechanical Behavior and Associated Microstructures: [Dissertation], 1982, Berkeley: Univ. California 197

[32]

Voegele V., Cordier P., Sautter V., . Plastic Deformation of Silicate Garnets; II, Deformation Microstructures in Natural Samples. Phys. Earth Planet. Inter., 1998, 108(4): 319-338.

[33]

Wang Y. B., Durham W. B., Getting I. C., . The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressure up to 15 GPa. Rev. Sci. Inst., 2003, 74: 3002-3011.

[34]

Wang Z., Karato S. I., Fujino K.. High Temperature Creep of Single Crystal Gadolinium Gallium Garnet. Phys. Chem. Min., 1996, 23(2): 73-80.

[35]

Wang Z. C., Ji S. C.. Deformation of Silicate Garnets: Brittle-Ductile Transition and Its Geological Implications. Canad. Mineral., 1999, 37: 525-541.

[36]

Webb S. L.. The Elasticity of the Upper Mantle Orthosilicates Olivine and Garnet to 3 GPa. Phys. Chem. Minerals, 1989, 16(7): 684-692.

[37]

Weidner D. J.. Saxena S. K.. Mantle Model Based on Measured Physical Properties of Minerals. Chemistry and Physics of Terrestrial Planets, 1986, New York: Springer 251 274

[38]

Weidner D. J., Wang Y. B., Vaughan M. T.. Yield Strength at High Pressure and Temperature. Geophys. Res. Lett., 1994, 21(9): 753-756.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/