Ab initio two-phase molecular dynamics on the melting curve of SiO2

Yusuke Usui , Taku Tsuchiya

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 801 -810.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 801 -810. DOI: 10.1007/s12583-010-0126-9
Article

Ab initio two-phase molecular dynamics on the melting curve of SiO2

Author information +
History +
PDF

Abstract

Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20–160 GPa and temperatures of 2 500–6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (T m) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the T m and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10−9–3.3×10−9 m2/s, and the viscosity is 0.02–0.03 Pa·s along the T m. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions.

Keywords

Melting Curve / Eutectic Temperature / Lower Mantle / Mean Square Displacement / Eutectic Phase Diagram

Cite this article

Download citation ▾
Yusuke Usui, Taku Tsuchiya. Ab initio two-phase molecular dynamics on the melting curve of SiO2. Journal of Earth Science, 2010, 21(5): 801-810 DOI:10.1007/s12583-010-0126-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alfè D.. Melting Curve of MgO from First-Principles Simulations. Phys. Rev. Lett., 2005, 94 23 235701

[2]

Alfè D., Kresse G., Gillan M. J.. Structure and Dynamics of Liquid Iron under Earth’s Core Conditions. Phys. Rev. B, 2000, 61(1): 132-142.

[3]

Allen M. J., Tildesley D. J.. Computer Simulation of Liquids, 1987, Oxford: Oxford University Press

[4]

Andrault D., Fiquet G., Guyot F., . Pressure-Induced Landau-Type Transition in Stishovite. Science, 1998, 282(5389): 720-724.

[5]

Belonoshko A. B.. Molecular-Dynamics of MgSiO3 Perovskite at High-Pressures-Equation of State, Structure, and Melting Transition. Geochim. Cosmochim. Acta, 1994, 58(19): 4039-4047.

[6]

Belonoshko A. B.. Molecular Dynamics Simulations of Phase Transitions and Melting MgSiO3 with the Perovskite Structure-Comment. Am. Mineral., 2001, 86(1–2): 193-194.

[7]

Belonoshko A. B., Arapan S., Martonak R., . MgO Phase Diagram from First Principles in a Wide Pressure-Temperature Range. Phys. Rev. B, 2010, 81 5 054110

[8]

Belonoshko A. B., Dubrovinsky L. S.. Molecular Dynamics of Stishovite Melting. Geochim. Cosmochim. Acta, 1995, 59(9): 1883-1889.

[9]

Belonoshko A. B., Durbrovinsky L. S., Dubrovinsky N. A.. A New High-Pressure Silica Phase Obtained by Molecular Dynamics. Am. Mineral., 1996, 81(5–6): 785-788.

[10]

Belonoshko A. B., Skorodumova N. V., Rosengren A., . High-Pressure Melting of MgSiO3. Phys. Rev. Lett., 2005, 94 19 195701

[11]

Bowen N. L.. The Melting Phenomena of the Plagioclase Feldspars. Am. J. Sci., 1913, 35(210): 577-599.

[12]

Cohen R. E.. Syono Y., Manghnani M. H.. First-Principles Predictions of Elasticity and Phase Transitions in High Pressure SiO2 and Geophysical Implications. High-Pressure Research: Applications to Earth and Planetary Sciences, 1992, Washington D.C.: American Geophysical Union 425 432

[13]

Dubrovinsky L. S., Saxena S. K., Lazor P., . Experimental and Theoretical Identification of a New High-Pressure Phase of Silica. Nature, 1997, 388(6640): 362-365.

[14]

Hirose K., Fei Y. W., Ma Y. Z., . The Fate of Subducted Basaltic Crust in the Earth’s Lower Mantle. Nature, 1999, 396(6714): 53-56.

[15]

Holland K. G., Ahrens T. J.. Melting of (Mg, Fe)2SiO4 at the Core-Mantle Boundary of the Earth. Science, 1997, 275(5306): 1623-1625.

[16]

Karki B. B., Bhattarai D., Stixrude L.. First-Principles Simulations of Liquid Silica: Structual and Dynamical Behavior at High Pressure. Phys. Rev. B., 2007, 76 10 104205

[17]

Karki B. B., Stixrude L. P.. Viscosity of MgSiO3 Liquid at Earth’s Mantle Conditions: Implications for an Early Magma Ocean. Science, 2010, 328(5979): 740-742.

[18]

Karki B. B., Warren M. C., Stixrude L., . Ab Initio Studies of High-Pressure Structural Transformations in Silica. Phys. Rev. B, 1997, 55(6): 3465-3471.

[19]

Kato T.. Stability Relation of (Mg,Fe)SiO3 Garnets, Major Constituents in the Earth’s Interior. Earth Planet. Sci. Lett., 1986, 77(3–4): 399-408.

[20]

Kawai K., Tsuchiya T.. Temperature Profile in the Lowermost Mantle from Seismological and Mineral Physics Joint Modeling. Proc. Natl. Acad. Sci. USA, 2009, 106(52): 22119-22123.

[21]

Kingma K. J., Cohen R. E., Hemley R. J., . Transformation of Stishovite to a Denser Phase at Lower-Mantle Pressures. Nature, 1995, 374(6519): 243-245.

[22]

Lacks D. J., Rear D. B., Van-Orman J. A.. Molecular Dynamics Investigation of Viscosity, Chemical Diffusivities and Partial Molar Volumes of Liquids along the MgO-SiO2 Join as Functions of Pressure. Geochem. Cosmochim. Acta, 2007, 71(5): 1312-1323.

[23]

Luo S. N., Cagin T., Strachan A., . Molecular Dynamics Modeling of Stishovite. Earth Planet. Sci. Let., 2005, 202(1): 147-157.

[24]

McMahan A. K., Ross M.. High-Temperature Electron-Band Calculations. Phys. Rev. B, 1977, 15: 718-725.

[25]

Mermin N. D.. Thermal Properties of the Inhomogeneous Electron Gas. Phys. Rev., 1965, 127: A1441-A1443.

[26]

Mozzi R. L., Warren B. E.. The Structure of Vitreous Silica. J. Appl. Crystallogr., 1969, 2: 164-172.

[27]

Murakami, M., Hirose, K., Ono, S., et al., 2003. Stability of CaCl2-Type and Alpha-PbO2-Type SiO2 at High Pressure and Temperature Determined by In Situ X-Ray Measurements. Geophys. Res. Lett., 30(5): doi:10.1029/2002GL016722

[28]

Ono S., Hirose K., Murakami M., . Post-Stishovite Phase Boundary in SiO2 Determined by In Situ X-Ray Observations. Earth Planet. Sci. Lett., 2002, 197(3–4): 187-192.

[29]

Perdew J. P., Zunger A.. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B, 1981, 23(10): 5048-5079.

[30]

Shen G. Y., Lazor P.. Measurement of Melting Temperature of Some Minerals under Lower Mantle Pressures. J. Geophys. Res., 1995, 100(B9): 17699-17713.

[31]

Stishov S. M., Popova S. V.. A New Dense Modification of Silica. Geokhimiya, 1961, 10: 837-839.

[32]

Stixrude L., Karki B.. Structure and Freezing of MgSiO3 Liquid in Earth’s Lower Mantle. Science, 2005, 310(5746): 297-299.

[33]

Trave A., Tangney P., Scandolo S., . Pressure-Induced Structural Changes in Liquid SiO2 from Ab Initio Simulations. Phys. Rev. Lett., 2002, 89 24 245504

[34]

Troullier N., Martins J. L.. Efficient Pseudopotentials for Plane-Wave Calculations. Phys. Rev. B, 1991, 43(3): 1993-2006.

[35]

Tsuchiya T., Caracas R., Tsuchiya J.. First Principles Determination of the Phase Boundaries of High-Pressure Polymorphs of Silica. Geophys. Res. Lett., 2004, 31 11 L11610

[36]

Tsuchiya T., Tsuchiya J., Umemoto K., . Phase Transition in MgSiO3 Perovskite in the Earth’s Lower Mantle. Earth Planet. Sci. Lett., 2004, 224(3–4): 241-248.

[37]

Vanderbilt D.. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B, 1990, 41(11): 7892-7895.

[38]

Waseda Y., Toguri J. M.. The Structure of Molten Binary Silicate Systems CaO-SiO2 and MgO-SiO2. Metall. Trans. B, 1977, 8: 563-568.

[39]

Williams Q., Garnero E. J.. Seismic Evidence for Partial Melt at the Base of Earth’s Mantle. Science, 1996, 273(5281): 1528-1530.

[40]

Zhang J. Z., Liebermann R. C., Gasparik T., . Melting and Subsolidus Relations of SiO2 at 9–14 GPa. J. Geophys. Res., 1993, 98(B11): 19785-19793.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/