Recent advances in high pressure and temperature rheological studies

Yanbin Wang , Nadege Hilairet , Przemyslaw Dera

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 495 -516.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 495 -516. DOI: 10.1007/s12583-010-0124-y
Article

Recent advances in high pressure and temperature rheological studies

Author information +
History +
PDF

Abstract

Rheological studies at high pressure and temperature using in-situ X-ray diffraction and imaging have made significant progresses in recent years, thanks to a combination of recent developments in several areas: (1) advances in synchrotron X-ray techniques, (2) advances in deformation devices and the abilities to control pressure, temperature, stress, strain and strain rates, (3) theoretical and computational advances in stress determination based on powder and single crystal diffraction, (4) theoretical and computational advances in modeling of grain-level micromechanics based on elasto-plastic and visco-plastic self-consistent formulations. In this article, we briefly introduce the experimental techniques and theoretical background for in-situ high pressure, high temperature rheological studies, and then review recent studies of rheological properties of major mantle materials. Some currently encountered issues have prompted developments in single-crystal quasi-Laue diffraction for complete stress tensor determination and textural evolution of poly-phased composites based on X-ray microtomography. Future prospects are discussed.

Keywords

rheology / deformation / composite / synchrotron radiation / high pressure and high temperature / diffraction / tomography

Cite this article

Download citation ▾
Yanbin Wang, Nadege Hilairet, Przemyslaw Dera. Recent advances in high pressure and temperature rheological studies. Journal of Earth Science, 2010, 21(5): 495-516 DOI:10.1007/s12583-010-0124-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balchan A. S., Drickamer H. G.. High Pressure Electrical Resistance Cell, and Calibration Points above 100 kbars. The Review of Scientific Instruments, 1961, 32: 308-313.

[2]

Burnley P. C., Zhang D.. Interpreting In Situ X-Ray Diffraction Data from High Pressure Deformation Experiments Using Elastic-Plastic Self-consistent Models: An Example Using Quartz. Journal of Physics, Condensed Matter, 2008, 20 28 285201

[3]

Carrez P., Walker A. M., Metsue A., . Evidence from Numerical Modeling for 3D Spreading of [001] Screw Dislocations in Mg2SiO4 Forsterite. Philosophical Magazine, 2008, 88(16): 2477-2845.

[4]

Cordier P., Couvy H., Merkel S., . Plastic Deformation of Minerals at High Pressures: Experimental Techniques. EMU Notes in Mineralogy, 2005, 14: 339-355.

[5]

Downs R. T., Singh A. K.. Analysis of Deviatoric Stress from Nonhydrostatic Pressure on a Single Crystal in a Diamond Anvil Cell: The Case of Monoclinic Aegirine, NaFeSi2O6. Journal of Physics and Chemistry of Solids, 2006, 67(9–10): 1995-2000.

[6]

Duffy T. S., Hemley R. J., Mao H. K.. Equation of State and Shear-Strength at Multimegabar Pressures: Magnesium Oxide to 227 GPa. Physical Review Letters, 1995, 74(8): 1371-1374.

[7]

Durham W. B., Goetze C.. Plastic Flow of Oriented Single Crystals of Olivine: 1. Mechanical Data. Journal of Geophysical Research, 1977, 82(36): 5737-5753.

[8]

Durham W. B., Mei S. H., Kohlstedt D. L., . New Measurements of Activation Volume in Olivine under Anhydrous Conditions. Physics of the Earth and Planetary Interiors, 2009, 172(1–2): 67-73.

[9]

Durham W. B., Weidner D. J., Karato S. I., . Karato S. I., Wenk H. R., . New Developments in Deformation Experiments at High Pressure. Plastic Deformation of Minerals and Rocks, Reviews in Mineralogy, 2002, Washington D.C.: Mineralogical Society of America 21 49

[10]

Durnick J., Legris A., Cordier P.. Pressure Sensitivity of Olivine Slip Systems: First-Principle Calculations of Generalised Stacking Faults. Phys. Chem. Miner., 2005, 32(8–9): 646-654.

[11]

Eshelby J. D.. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1957, 241: 376-396.

[12]

Funamori N., Funamori M., Jranloz R., . Broadening of X-Ray Powder Diffraction Lines under Nonhydrostatic Stress. J. Appl. Phys., 1997, 82(1): 142-146.

[13]

Gasperini P., Sabadini R.. Finite Element Modeling of Lateral Viscosity Heterogeneities and Post-Glacial Rebound. Tectonophysics, 1990, 179(1–2): 141-149.

[14]

Handy M. R.. Flow Laws for Rocks Containing Two Non-linear Viscous Phases: A Phenomenological Approach. Journal of Structural Geology, 1994, 16(3): 287-301.

[15]

Hazen R. M., Downs R. T., Prewitt C. T.. Hazen R. M., Downs R. T.. Principles of Comparative Crystal Chemistry. High-Temperature and High-Pressure Crystal Chemistry, 2000, Washington D.C.: Mineralogical Society of America 1 33

[16]

Hilairet N., Reynard B., Wang Y. B., . High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction. Science, 2007, 318(5858): 1910-1913.

[17]

Hilairet, N., Wang, Y. B., Sanehira, T., et al., 2010. Deformation of Olivine under Upper Mantle Conditions: Flow Laws and Deformation Mechanisms from In-Situ Monochromatic Difraction and Imaging. Earth and Planetary Science Letters (submitted)

[18]

Hirth G., Kohlstedt D.. Eiler J.. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Inside the Subduction Factory, Geophysical Monograph, 2003, Washington, D.C.: American Geophysical Union 83 105

[19]

Holyoke C. W., Tullis J.. Mechanisms of Weak Phase Interconnection and the Effects of Phase Strength Contrast on Fabric Development. Journal of Structural Geology, 2006, 28(4): 621-640.

[20]

Hutchinson J. W.. Elastic-Plastic Behaviour of Polycrystalline Metals and Composites. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1970, 319(1537): 247-272.

[21]

Ice G.. The Future of Spatially-Resolved Polychromatic Neutron and X-Ray Microdiffraction. Metallurgical and Materials Transactions A, 2008, 39(13): 3058-3064.

[22]

Irifune T.. Development of Multianvil Technqieus for Studies in Deep Earth Mineralogy. High Pressure Science and Technology, 2009, 19(1): 62-69.

[23]

Ischia G., Wenk H. R., Lutterotti L., . Quantitative Reitveld Texture Analysis of Zirconium from Single Synchrotron Diffraction Images. Journal of Applied Crystal lography, 2005, 38: 377-380.

[24]

Jung H., Mo W., Green H. W.. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geosci., 2009, 2(1): 73-77.

[25]

Karato S. I., Weidner D. J.. Laboratory Studies of the Rheological Properties of Minerals under Deep-Mantle Conditions. Elements, 2008, 4: 191-196.

[26]

Kawazoe T., Karato S. I., Otsuka K., . Shear Deformation of Dry Polycrystalline Olivine under Deep Upper Mantle Conditions Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 2009, 174(1–4): 128-137.

[27]

Kawazoe T., Nishiyama N., Nishihara Y., . Pressure Generation to 25 GPa Using a Cubic Anvil Apparatus with a Multi-Anvil 6–6 Assembly. High Pressure Research, 2010, 30(1): 167-174.

[28]

Lebensohn R. A., Tomé C. N.. A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1994, 175(1–2): 71-82.

[29]

Lesher C. E., Wang Y. B., Gaudio S., . Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 2009, 174(1–4): 292-301.

[30]

Li L., Long H. B., Raterron P., . Plastic Flow of Pyrope at Mantle Pressure and Temperature. American Mineralogist, 2006, 91: 517-525.

[31]

Li L., Weidner D., Raterron P., . Deformation of Olivine at Mantle Pressure Using the D-DIA. European Journal of Mineralogy, 2006, 18: 7-19.

[32]

Li L., Raterron P., Weidner D., . Olivine Flow Mechanisms at 8 GPa. Physics of the Earth and Planetary Interiors, 2003, 138(2): 113-129.

[33]

Lonardelli I., Wenk H. R., Lutterotti L., . Texture Analysis from Synchrotron Diffraction Images with the Rietveld Method: Dinosaur Tendon and Salmon Scale. Journal of Synchrotron Radiation, 2005, 12(3): 354-360.

[34]

Lutterotti L., Matthies S., Wenk H. R.. MAUD: A Friendly Java Program for Materials Analysis Using Diffraction. Int. U. Crystallogr. Comm. Powder Diffraction Newsletter, 1999, 21: 14-15.

[35]

Matthies S., Vinel G. W.. On the Reproduction of the Orientation Distribution Function of Textured Samples from Reduced Pole Figures Using the Conception of a Conditional Ghost Correction. Physica Status Solidi B-Basic Research, 1982, 112(2): K111-K114.

[36]

Merkel S., Tomé C., Wenk H. R.. Modeling Analysis of the Influence of Plasticity on High Pressure Deformation of hcp-Co. Physical Review B, 2009, 79 6 064110

[37]

Merkel, S., Wenk, H., Shu, J. F., et al., 2002. Deformation of Polycrystalline MgO at Pressures of the Lower Mantle. J. Geophys. Res., 107(B11)

[38]

Merkel S., Yagi T.. Effect of Lattice Preferred Orientation on Lattice Strains in Polycrystalline Materials Deformed under High Pressure: Application to hcp-Co. Journal of Physics and Chemistry of Solids, 2006, 67(9–10): 2119-2131.

[39]

Milne G. A., Mitrovica J. X., Forte A. M.. The Sensitivity of Glacial Isostatic Adjustment Predictions to a Low-Viscosity Layer at the Base of the Upper Mantle. Earth and Planetary Science Letters, 1998, 154(1–4): 265-278.

[40]

Miyagi L., Nishiyama N., Wang Y. B., . Deformation and Texture Development in CaIrO3 Post-Perovskite Phase up to 6 GPa and 1 300 K. Earth and Planetary Science Letters, 2008, 268(3–4): 515-525.

[41]

Nishihara Y.. Recent Technical Developments of High-Pressure Deformation Experiments. The Review of High Pressure Science and Technology, 2008, 18: 223-229.

[42]

Nishihara Y., Tinker D., Kawazoe T., . Plastic Deformation of Wadsleyite and Olivine at High-Pressure and High-Temperature Using a Rotational Drickamer Apparatus (RDA). Physics of the Earth and Planetary Interiors, 2008, 170(3–4): 156-169.

[43]

Nishiyama N., Wang Y. B., Rivers M. L., . Rheology of Epsilon-Iron up to 19 GPa and 600 K in the D-DIA. Geophys. Res. Lett., 2007, 35 23 L23304

[44]

Nishiyama N., Wang Y. B., Sanehira T., . Development of the Multi-anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Research, 2008, 28(3): 307-314.

[45]

Nishiyama N., Wang Y. B., Uchida T., . Pressure and Strain Dependence of the Strength of Sintered Polycrystalline Mg2SiO4 Ringwoodite. Geophys. Res. Lett., 2005, 32 4 L04307

[46]

Nye J. F.. Physical Properties of Crystals: Their Representation by Tensors and Matrices, 1985, Oxford: Clarendon Press

[47]

Paterson M. S., Olgaard D. L.. Rock Deformation Tests to Large Shear Strains in Torsion. Journal of Structural Geology, 2000, 22(9): 1341-1358.

[48]

Raterron P., Amiguet E., Chen J. H., . Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 2009, 172(1–2): 74-83.

[49]

Rivers M. L., Sutton S. R., Eng P.. Geoscience Applications of X-Ray Computed Microtomography. SPIE, 1999, 3772: 78-86.

[50]

Singh A. K.. The Lattice Strain in a Specimen (Cubic System) Compressed Nonhydrostatically in an Opposed Anvil Device. J. Appl. Phys., 1993, 74(9): 5920-5920.

[51]

Takeda Y. T., Griera A.. Rheological and Kinematical Responses to Flow of Two-Phase Rocks. Tectonophysics, 2006, 427(1–4): 95-113.

[52]

Turner P. A., Tome C. N.. A Study of Residual-Stresses in Zircaloy-2 with Rod Texture. Acta Metallurgica et Materialia, 1994, 42(12): 4143-4153.

[53]

Uchida T., Funamori N., Yagi T.. Lattice Strains in Crystals under Uniaxial Stress Field. J. Appl. Phys., 1996, 80(2): 739-746.

[54]

Uchida T., Wang Y. B., Rivers M. L., . Yield Strength and Strain Hardening of MgO up to 8 GPa Measured in the Deformation-DIA with Monochromatic X-Ray Diffraction. Earth and Planetary Science Letters, 2004, 226(1–2): 117-126.

[55]

Uchida T., Wang Y. B., Rivers M., . Chen J. H., Wang Y. B., Duffy T. S., . Stress and Strain Measurements of Polycrystalline Materials under Controlled Deformation at High Pressure Using Monochromatic Synchrotron Radiation. Advances in High-Pressure Techniques for Geophysical Applications, 2005, Amsterdam: Elsevier 137 165

[56]

Wang Y. B., Dera P. K., Hilairet N., . High-Pressure Deformation of Single-Crystal Garnet in the D-DIA Using Quasi Laue Diffraction. EOS Trans. AGU, Fall Meet. Suppl. Abstract, 2009, 90(52): MR31B-1649.

[57]

Wang Y. B., Durham W. B., Getting I. C., . The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum., 2003, 74(6): 3002-3011.

[58]

Wang Y. B., Hilairet N.. Rheology at High Pressure and High Temperature. High-Pressure Crystallography: Advanced New Armor Materials and Protection from Explosives, 2009, Erice, Sicily: NATO

[59]

Wang, Y. B., Lesher, C., Fiquet, G., et al., 2010. In-Situ High-P, T, X-Ray Microtomographic Imaging during Large Deformation: A New Technique for Studying Mechanical Behavior of Multi-phase Composites. Geosphere, (Submitted)

[60]

Wang Y. B., Uchida T., Westferro F., . High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 2005, 76 7 073709

[61]

Weidner, D. J., Li, L., Davis, M., et al., 2004. Effect of Plasticity on Elastic Modulus Measurements. Geophysical Research Letters, 31(6), doi:10.1029/2003GL019090

[62]

Weidner D. J., Vaughan M. T., Wang L. P., . Precise Stress Measurements with White Synchrotron X Rays. Rev. Sci. Instrum., 2010, 81 1 013903

[63]

Wenk H. R., Ischia G., Nishiyama N., . Texture Development and Deformation Mechanisms in Ringwoodite. Physics of the Earth and Planetary Interiors, 2005, 152(3): 191-199.

[64]

Wenk H. R., Lonardelli I., Pehi J., . In Situ Observation of Texture Development in Olivine, Ringwoodite, Magnesiowustite and Silicate Perovskite at High Pressure. Earth and Planetary Science Letters, 2004, 226(3–4): 507-519.

[65]

Wenk H. R., Matthies S., Donovan J., . BEARTEX, a Windows-Based Program System for Quantitative Texture Analysis. J. Appl. Crystallogr., 1998, 31: 262-269.

[66]

Wenk H. R., Matthies S., Hemley R. J., . The Plastic Deformation of Iron at Pressures of the Earth’s Inner Core. Nature, 2000, 405(6790): 1044-1047.

[67]

Xu Y. S., Nishihara Y., Karato S. I., . Chen J. H., Wang Y. B., Duffy T. S., . Development of a Rotational Drickamer Apparatus for Large-Strain Deformation Experiments at Deep Earth Conditions. Advances in High-Pressure Techniques for Geophysical Applications, 2005, Amsterdam: Elsevier 167 182

[68]

Yamazaki D., Karato S. I.. High Pressure Rotational Deformation Apparatus to 15 GPa. Rev. Sci. Instrum., 2001, 72(11): 4207-4211.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/