Effects of lattice preferred orientation and retrogression on seismic properties of eclogite

Feng Shi, Yongfeng Wang, Haijun Xu, Junfeng Zhang

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 569-580.

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 569-580. DOI: 10.1007/s12583-010-0123-z
Article

Effects of lattice preferred orientation and retrogression on seismic properties of eclogite

Author information +
History +

Abstract

We report here lattice preferred orientations (LPOs) and seismic properties of eclogites from the Sulu (苏鲁) UHP terrane. Our results show strong fabrics in omphacite and amphibole, and approximately random fabrics in garnet with or without strong shape preferred orientations (SPOs). Dislocation creep is likely to be responsible for the observed omphacite fabrics that vary with geometry and orientation of finite strain ellipsoid. Weak garnet LPOs suggest that garnet did not accommodate plastic strain or was not deformed by dislocation creep with a dominant slip system. The calculated seismic properties of eclogites and their component minerals show a strong correlation with their LPOs. Seismic anisotropies are mostly induced by omphacite component in fresh eclogites and by amphibole component in retrograded eclogites, respectively. Retrogression of omphacite to amphibole and quartz will increase seismic anisotropies but decreases seismic velocities of eclogite. Garnet component increases the seismic velocities but decreases seismic anisotropies of eclogite. Comparison of the calculated and the measured seismic properties of eclogites suggests that both methods resolve comparable results with some discrepancies. Compositional layering can play a very important role in determining the seismic properties of eclogites in addition to LPO.

Keywords

eclogite / LPO / retrogression / seismic property / deformation mechanism

Cite this article

Download citation ▾
Feng Shi, Yongfeng Wang, Haijun Xu, Junfeng Zhang. Effects of lattice preferred orientation and retrogression on seismic properties of eclogite. Journal of Earth Science, 2010, 21(5): 569‒580 https://doi.org/10.1007/s12583-010-0123-z

References

Ábalos B.. Omphacite Fabric Variation in the Cabo Ortegal Eclogite (NW Spain): Relationships with Strain Symmetry during High-Pressure Deformation. Journal of Structural Geology, 1997, 19(5): 621-637.
CrossRef Google scholar
Alexandrov S. K., Ryzhova T. V.. The Elastic Properties of Rock Forming Minerals: Pyroxene and Amphibole. Bulletin of the Academy of Sciences of the U.S.S.R., Geophysics Series, 1961, 9: 1165-1168.
Anderson D. L.. Speculations on the Nature and Cause of Mantle Heterogeneity. Tectonophysics, 2006, 416(1–4): 7-22.
CrossRef Google scholar
Baratoux L., Lexa O., Cosgrove J. W., . The Quantitative Link between Fold Geometry, Mineral Fabric and Mechanical Anisotropy: As Exemplified by the Deformation of Amphibolites across a Regional Metamorphic Gradient. Journal of Structural Geology, 2005, 27(4): 707-730.
CrossRef Google scholar
Barberini V., Burlini L., Zappone A.. Elastic Properties, Fabric and Seismic Anisotropy of Amphibolites and Their Contribution to the Lower Crust Reflectivity. Tectonophysics, 2007, 445(3–4): 227-244.
CrossRef Google scholar
Bascou J., Barruol G., Vauchez A., . EBSD-Measured Lattice-Preferred Orientations and Seismic Properties of Eclogites. Tectonophysics, 2001, 342(1–2): 61-80.
CrossRef Google scholar
Bascou J., Tommasi A., Mainprice D.. Plastic Deformation and Development of Clinopyroxene Lattice Preferred Orientations in Eclogites. Journal of Structural Geology, 2002, 24(8): 1357-1368.
CrossRef Google scholar
Berger A., Stünitz H.. Deformation Mechanisms and Reaction of Hornblende: Examples from the Bergell Tonalite (Central Alps). Tectonophysics, 1996, 257(2–4): 149-174.
CrossRef Google scholar
Binns R. A.. Barroisite-Bearing Eclogite from Naustdal, Sogn og Fjordane, Norway. Journal of Petrology, 1967, 8(3): 349-371.
Brenker F. E., Prior D. J., Müeller W. F.. Cation Ordering in Omphacite and Effect on Deformation Mechanism and Lattice Preferred Orientation (LPO). Journal of Structural Geology, 2002, 24(12): 1991-2005.
CrossRef Google scholar
Coleman R. G., Wang X.. Ultrahigh Pressure Metamorphism, 1995, New York: Cambridge University Press 544
Collins M. D., Brow J. M.. Elasticity of an Upper Mantle Clinopyroxene. Physics and Chemistry of Minerals, 1998, 26: 7-13.
CrossRef Google scholar
Den-Brok B., Kruhl J. H., Ji S. C., . Ductility of Garnet as an Indicator of Extremely High Temperature Deformation: Discussion and Reply. Journal of Structural Geology, 1996, 18(11): 1369-1379.
CrossRef Google scholar
Dobrzhinetskaya L. F., Schweinehage R., Massonne H. J., . Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland: Evidence of Deep Subduction. Journal of Metamorphic Geology, 2002, 20(5): 481-492.
CrossRef Google scholar
Doukhan N., Sautter V., Doukhan J. C.. Ultradeep, Ultra-mafic Mantle Xenoliths-Transmission Electron Microscopy Preliminary Results. Physics of the Earth and Planetary Interiors, 1994, 82(3–4): 195-207.
CrossRef Google scholar
Egydio-Silva M., Vauchez A., Bascou J., . High-Temperature Deformation in the Neoproterozoic Transpressional Ribeira Belt, Southeast Brazil. Tectonophysics, 2002, 352(1–2): 203-224.
CrossRef Google scholar
Fountain D. M., Boundy T. M., Austrheim H., . Eclogite-Facies Shear Zones-Deep Crustal Reflectors?. Tectonophysics, 1994, 232(1–4): 411-424.
CrossRef Google scholar
Godard G., Van-Roermund H. L. M.. Deformation-Induced Clinopyroxene from Eclogites. Journal of Structural Geology, 1995, 17(10): 1425-1443.
CrossRef Google scholar
Hacker B. R., Liou J. G.. When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks, 1998, Dordrecht: Kluwer Academic Publishers 336
Helmstaedt H., Anderson O. L., Gavasci A. T.. Petrofabric Studies of Eclogite, Spinel-Websterite, and Spinel-Lherzolite Xenoliths from Kimberlite-Bearing Breccia Pipes in Southeastern Utah and Northeastern Arizona. Journal of Geophysical Research, 1972, 77(23): 4350-4365.
CrossRef Google scholar
Ji S. C., Saruwatari K., Mainprice D., . Microstructures, Petrofabrics and Seismic Properties of Ultra High-Pressure Eclogites from Sulu Region, China: Implications for Rheology of Subducted Continental Crust and Origin of Mantle Reflections. Tectonophysics, 2003, 370(1–4): 49-76.
CrossRef Google scholar
Jin Z. M., Zhang J. F., Green H. W., . Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 2001, 29: 667-670.
CrossRef Google scholar
Jung H., Mo W., Green H. W.. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geoscience, 2009, 2(1): 73-77.
CrossRef Google scholar
Katayama I., Hirauchi K. I., Michibayashi K., . Trench-Parallel Anisotropy Produced by Serpentine Deformation in the Hydrated Mantle Wedge. Nature, 2009, 461(7267): 1114-1117.
CrossRef Google scholar
Kern H., Jin Z. M., Gao S., . Physical Properties of Ultrahigh-Pressure Metamorphic Rocks from the Sulu Terrain, Eastern Central China: Implications for the Seismic Structure at the Donghai (CCSD) Drilling Site. Tectonophysics, 2002, 354(3–4): 315-330.
CrossRef Google scholar
Kitamura K.. Constraint of Lattice-Preferred Orientation (LPO) on V P Anisotropy of Amphibole-Rich Rocks. Geophysical Journal of International, 2006, 165(3): 1058-1065.
CrossRef Google scholar
Leitner B. J., Weidner D. J., Liebermann R. C.. Elasticity of Single Crystal Pyrope and Implications for Garnet Solid Solution Series. Physics of the Earth and Planetary Interiors, 1980, 22: 111-121.
CrossRef Google scholar
Mainprice D.. A Fortran Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers and Geosciences, 1990, 16(3): 385-393.
CrossRef Google scholar
Mainprice, D., Barruol, G., Ben-Ismail, W., 2000. The Anisotropy of the Earth’s Mantle: From Single Crystal to Polycrystal. In: Karato, S. I., Forte, A. M., Liebermann, R. C., et al., eds., Mineral Physics and Seismic Tomography from the Atomic to the Global Scale. Geophysical Monograph Series, American Geophysical Union, Washington, 117: 237–264
Mainprice D., Bascou J., Cordier P., . Crystal Preferred Orientations of Garnet: Comparison between Numerical Simulations and Electron Back-Scattered Diffraction (EBSD) Measurements in Naturally Deformed Eclogites. Journal of Structural Geology, 2004, 26(11): 2089-2102.
CrossRef Google scholar
Mainprice D., Humbert M.. Methods of Calculating Petrophysical Properties from Lattice Preferred Orientation Data. Surveys in Geophysics, 1994, 15(5): 575-592.
CrossRef Google scholar
Mainprice D., Nicolas A.. Development of Shape and Lattice Preferred Orientations: Application to the Seismic Anisotropy of the Lower Crust. Journal of Structural Geology, 1989, 11(1–2): 175-189.
CrossRef Google scholar
Mauler A., Burlini L., Kunze K., . P-Wave Anisotropy in Eclogites and Relationship to the Omphacite Crystallographic Fabric. Physics and Chemistry of the Earth (A), 2000, 25(2): 119-126.
CrossRef Google scholar
Mauler A., Godard G., Kunze K.. Crystallographic Fabrics of Omphacite, Rutile and Quartz in Vendee Eclogites (Armorican Massif, France): Consequences for Deformation Mechanisms and Regimes. Tectonophysics, 2001, 342(1–2): 81-112.
CrossRef Google scholar
McSkimin H. J., Andreatch J. P., Thurston R. N.. Elastic Moduli of Quartz versus Hydrostatic Pressure at 25 and −195.8°C. Journal of Applied Physics, 1965, 36: 1624-1632.
CrossRef Google scholar
Piepenbreier D., Stöeckhert B.. Plastic Flow of Omphacite in Eclogites at Temperatures below 500°—Implications for Interplate Coupling in Subduction Zones. International Journal of Earth Sciences, 2001, 90(1): 197-210.
CrossRef Google scholar
Prior D. J., Wheeler J., Brenker F. E., . Crystal Plasticity of Natural Garnet: New Microstructural Evidence. Geology, 2000, 28: 1003-1006.
CrossRef Google scholar
Rudnick R. L., Barth M., Horn I., . Rutile-Bearing Refractory Eclogites: Missing Link between Continents and Depleted Mantle. Science, 2000, 287(5451): 278-281.
CrossRef Google scholar
Siegesmund S., Helming K., Kruse R.. Complete Texture Analysis of a Deformed Amphibolite: Comparison between Neutron Diffraction and U-Stage Data. Journal of Structural Geology, 1994, 16(1): 131-142.
CrossRef Google scholar
Skemer P., Katayama I., Jiang Z. T., . The Misorientation-Index: Development of a New Method for Calculating the Strength of Lattice-Preferred Orientation. Tectonophysics, 2005, 411(1–4): 157-167.
CrossRef Google scholar
Smith D. C.. Eclogites and Eclogite-Facies Rocks, Developments in Petrology, 1988, Amsterdam: Elsevier 524
Ulrich S., Mainprice D.. Does Cation Ordering in Omphacite Influence Development of Lattice-Preferred Orientation?. Journal of Structural Geology, 2005, 27(3): 419-431.
CrossRef Google scholar
Wang L., Jin Z. M., Kusky T., . Microfabric Characteristics and Rheological Significance of Ultra-High-Pressure Metamorphosed Jadeite-Quartzite and Eclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 2010, 28(2): 163-182.
CrossRef Google scholar
Wang Q., Burlini L., Mainprice D., . Geochemistry, Petrofabrics and Seismic Properties of Eclogites from the Chinese Continental Scientific Drilling Boreholes in the Sulu UHP Terrane, Eastern China. Tectonophysics, 2009, 475(2): 251-266.
CrossRef Google scholar
Wang Q., Ji S. C., Salisbury M. H., . Pressure Dependence and Anisotropy of P-Wave Velocities in Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt (China): Implications for Seismic Properties of Subducted Slabs and Origin of Mantle Reflections. Tectonophysics, 2005, 398(12): 67-99.
CrossRef Google scholar
Wang Q., Ji S. C., Salisbury M. H., . Shear Wave Properties and Poisson’s Ratios of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt, China: Implications for Crustal Composition. Journal of Geophysical Research, 2005, 110 B8 B08208
CrossRef Google scholar
Xu H. J., Zhang S. X., Jin Z. M.. Crystallographic Preferred Orientation of Amphibole in Retrograded Eclogites. Journal of Chinese Electron Microscopy Society, 2008, 207: 506-511.
Xu Z. Q., Wang Q., Tang Z. M., . Fabric Kinematics of the Ultrahigh-Pressure Metamorphic Rocks from the Main Borehole of the Chinese Continental Scientific Drilling Project: Implications for Continental Subduction and Exhumation. Tectonophysics, 2009, 475(2): 235-250.
CrossRef Google scholar
Zhang J. F., Green H. W.. Experimental Investigation of Eclogite Rheology and Its Fabrics at High Temperature and Pressure. Journal of Metamorphic Geology, 2007, 25(2): 97-115.
CrossRef Google scholar
Zhang J. F., Green H. W.. On the Deformation of UHP Eclogite: From Laboratory to Nature. International Geology Review, 2007, 49(6): 487-503.
CrossRef Google scholar
Zhang J. F., Green H. W., Bozhilov K. N.. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 2006, 246(3–4): 432-443.
CrossRef Google scholar
Zhang J. F., Green H. W., Bozhilov K., . Faulting Introduced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust. Nature, 2004, 428(6983): 633-636.
CrossRef Google scholar
Zhang J. F., Wang Y. F., Jin Z. M.. CPO-Induced Seismic Anisotropy in UHP Eclogites. Science in China (Sers. D), 2008, 51(1): 11-21.
CrossRef Google scholar
Zhao Z. D., Xie H. S., Zhou W. G., . Density and P-wave Velocity of the Eclogite in the Dabieshan and Its Implications for Crust-Mantle Recycling. Bulletin of Chinese Society of Mineralogy, Petrology and Geochemistry, 2001, 20(1): 6-10.

Accesses

Citations

Detail

Sections
Recommended

/