Origin and emplacement of Archean ophiolites of the central orogenic belt, North China craton

Timothy M. Kusky , Jianghai Li

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 744 -781.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 744 -781. DOI: 10.1007/s12583-010-0119-8
Article

Origin and emplacement of Archean ophiolites of the central orogenic belt, North China craton

Author information +
History +
PDF

Abstract

Understanding Archean crustal and mantle evolution hinges upon identification and characterization of oceanic lithosphere. We report and update here more than 10 years work on a complete, yet dismembered and metamorphosed Archean ophiolite sequence in the North China craton, in the Dongwanzi (东湾子)-Zunhua (遵化) structural belt and correlatives in the Wutaishan (五台山) area. Banded iron formation structurally overlies several tens of meters of variably deformed pillow lavas, mafic flows, and picritic amphibolites. These are in structural contact with a 2 km thick mixed gabbro and dike complex with gabbro screens, exposed discontinuously along strike for more than 20 km. The dikes consist of metamorphosed diabase, basalt, Hb-Cpx-gabbro, and pyroxenite. The dike/gabbro complex is underlain by several kilometers of mixed isotropic and foliated gabbro, which preserve compositional layering approximately 2 km below the dike complex, and then over several hundred meters merge into strongly compositionally layered gabbro and olivine-gabbro. The layered gabbro becomes mixed with layered pyroxenite/gabbro marking a transition zone into cumulate ultramafic rocks including serpentinized dunite, pyroxenite and wehrlite, and finally into strongly deformed and serpentinized olivine and orthopyroxene-bearing ultramafic rocks interpreted as depleted mantle harzburgite tectonites. A U/Pb zircon age of 2.505 Ga from gabbro of the Dongwanzi ophiolite makes it one of the world’s oldest recognized, laterally-extensive complete ophiolite sequences, though older dismembered ophiolites are recognized in South Africa and Greenland, extending back to 3.8 Ga. This age is confirmed by a ca. 2.6 Ga Re-Os isochron from chromites from the belt, and a number of dated 2.5–2.4 Ga cross-cutting younger igneous units. The Dongwanzi ophiolite is one of the largest well-preserved greenstone belts in the central orogenic belt that divides the North China craton into eastern and western blocks. More than 1 000 other fragments of gabbro, pillow lava, sheeted dikes, harzburgite, and podiform-chromite bearing dunite occur as tectonic blocks (tens to hundreds of meters long) in a biotite-gneiss and BIF matrix, intruded by tonalite and granodiorite, in the Zunhua structural belt. Blocks in this metamorphosed Archean ophiolitic mélange preserve deeper levels of oceanic mantle than the Dongwanzi ophiolite. The ophiolite-related mélange marks a suture zone across the North China craton, traced for more than 1 600 km along the central orogenic belt. Many of the chromitite bodies are localized in dunite envelopes within harzburgite tectonite, and have characteristic nodular and orbicular chromite textures, known elsewhere only from ophiolites. The chromites have variable but high chrome numbers (Cr/(Cr+Al)=0.74−0.93) and elevated P, also characteristic of suprasubduction zone ophiolites. The high chrome numbers, coupled with TiO2<0.2 wt.% and V2O5<0.1 wt.% indicate high degrees of partial melting from a very depleted mantle source and primitive melt for the chromite. A Re-Os isochron from the chromites indicates an age of 2.6 Ga, showing that they are the same age as the Dongwanzi ophiolite. The range in initial Os isotopic compositions in the chromites in these ophiolitic blocks is small and well within the range seen in modern ophiolites. The ultramafic and ophiolitic blocks in the Zunhua mélange are therefore interpreted as dismembered and strongly deformed parts of the Dongwanzi ophiolite. We suggest the name “Dongwanzi-Zunhua ophiolite belt” for these rocks. Geochemical and structural features of the Dongwanzi ophiolite suggest that it formed in a forearc environment and was incorporated in an accretionary prism soon after it formed. Neoarchean and Paleoproterozoic (2.50 and 1.90 Ga) high-pressure granulites form a belt more than 700 km long along the western side of the central orogenic belt. Several Neoarchean sedimentary basins consisting of conglomerate, greywacke, and shale are located along the eastern side of the central orogenic belt, and are interpreted as remnants of a foreland basin. The three belts record the Neoarchean subduction and collision between an arc terrane and eastern blocks of the North China craton in the Neoarchean, and further deformation and metamorphism in the Paleoproterozoic related to collisions on the northern margin of the already amalgamated North China craton.

Keywords

North China craton / Archean / ophiolite / Proterozoic / mélange / podiform chromite

Cite this article

Download citation ▾
Timothy M. Kusky, Jianghai Li. Origin and emplacement of Archean ophiolites of the central orogenic belt, North China craton. Journal of Earth Science, 2010, 21(5): 744-781 DOI:10.1007/s12583-010-0119-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbott D. H.. Plumes and Hotspots as Sources of Greenstone Belts. Lithos, 1996, 37(2–3): 113-127.

[2]

Ahmed A. G., Arai S., Attia A. K.. Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Proterozoic Ophiolite Complexes of Egypt. Mineralium Deposita, 2001, 36(1): 72-84.

[3]

Anonymous, 1972. Penrose Field Conference on Ophiolites. Geotimes, 17(12): 24–25

[4]

Arai S.. Chemistry of Chromian Spinel in Volcanic Rocks as a Potential Guide to Magma Chemistry. Mineralogical Magazine, 1992, 56(383): 173-184.

[5]

Arai S.. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 1997, 15(2–3): 303-310.

[6]

Arai S.. Control of Wall-Rock Composition on the Formation of Podiform Chromitites as a Result of Magma/Peridotite Interaction. Shigen Chishisu, 1997, 47(4): 177-187.

[7]

Arai S., Yurimoto H.. Possible Sub-arc Origin of Podiform Chromitites. The Island Arc, 1995, 4(2): 104-111.

[8]

Auge T.. Chromite Deposits in the Northern Oman Ophiolite: Mineralogical Constraints. Mineralium Deposita, 1987, 22(1): 1-10.

[9]

Bai J.. The Precambrian Crustal Evolution of China, 1996, Beijing: Geological Publishing House 165

[10]

Bai J., Dai F. Y.. Ma X. Y., Bai J.. Archean Crust of China. Precambrian Crustal Evolution of China, 1998, Beijing: Springer Geological Publishing House 15 86

[11]

Bai J., Wang R. Z., Guo J. J.. The Major Geological Events of Early Precambrian and Their Dating in Wutaishan Region, 1992, Beijing: Geological Publishing House 1 60

[12]

Berhe S. M.. Ophiolites in North and East Africa: Implications for Proterozoic Crustal Growth. Journal of the Geological Society, 1990, 147: 41-57.

[13]

Bickle M. J., Nisbet E. G., Martin A.. Archean Greenstone Belts are not Oceanic Crust. Journal of Geology, 1994, 102(2): 121-137.

[14]

Canil D.. Vanadium Partitioning and the Oxidation State of Archean Komatiite Magmas. Nature, 1997, 389(6653): 842-845.

[15]

Canil D.. Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas. Geochimica et Cosmochimica Acta, 1999, 63(34): 557-572.

[16]

Chadwick B., Crewe M. A.. Chromite in the Early Archean Akilia Association (ca. 3 800 M.Y.) Ivisartoq Region, Inner Godthabsfjord, Southern West Greenland. Economic Geology, 1986, 81: 184-191.

[17]

Cotterill P.. The Chromite Deposits of Selukwe, Rhodesia. Economic Geology Monograph, 1969, 4: 154-186.

[18]

Dann J. C.. Pseudostratigraphy and Origin of the Early Proterozoic Payson Ophiolite, Central Arizona. Geological Society of America Bulletin, 1997, 109: 347-365.

[19]

Dann J. C.. Branching Sheeted Dikes and Seafloor Spreading within an Early Proterozoic Intra-arc Basin. Journal of Geophysical Research, 1997, 102(B11): 24917-24929.

[20]

Davis G. A., Qian X. L., Zheng Y. D., . Yin A., Harrison T. M., . Mesozoic Deformation and Plutonism in the Yunmeng Shan: A Metamorphic Core Complex North of Beijing, China. The Tectonic Evolution of Asia, 1996, London: Cambridge University Press 253 280

[21]

De-Wit, M. J., 2004. Archean Greenstone Belts do Contain Fragments of Ophiolites, In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 599–614

[22]

De-Wit M. J., De-Ronde C. E. J., Tredoux M., . Formation of an Archean Continent. Nature, 1992, 357: 553-562.

[23]

De-Wit M. J., Hart R. A., Hart R. J.. The Jamestown Ophiolite Complex, Barberton Mountain Belt: A Section through 3.5 Ga Oceanic Crust. Journal of African Earth Sciences, 1987, 6(5): 681-730.

[24]

De-Wit M. J., Hart R. A., Martin A., . Archean Abiogenic and Probable Biogenic Structures Associated with Mineralized Hydrothermal Vent Systems and Regional Metasomatism, with Implications for Greenstone Belt Studies. Economic Geology, 1982, 77: 1783-1802.

[25]

Dick H. J. B., Bullen T.. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.

[26]

Dilek, Y., 2003. Ophiolite Concept and Its Evolution. In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper, 373: 1–16

[27]

Dilek Y., Furnes H.. Structure and Geochemistry of Tethyan Ophiolites and Their Petrogenesis in Subduction Rollback Systems. Lithos, 2009, 11(1–2): 1-20.

[28]

Dilek Y., Furnes H., Shallo M.. Suprasubduction Zone Ophiolite Formation along the Periphery of Mesozoic Gondwana. Gondwana Research, 2007, 11(4): 453-475.

[29]

Dilek Y., Furnes H., Shallo M.. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 2008, 100(1–4): 174-209.

[30]

Dilek Y., Moores E., Elthon D., . Ophiolites and Oceanic Crust. Geological Society of America Special Paper, 2000, 349 552

[31]

Dilek Y., Polat A.. Suprasubduction Zone Ophiolites and Archean Tectonics. Geology, 2008, 36: 430-432.

[32]

Dilek Y., Robinson P. T.. Ophiolites in Earth History: Introduction. Geological Society of London Special Publication, 2003, 218: 1-8.

[33]

Dilek Y., Thy P.. Island Arc Tholeiite to Boninitic Melt Evolution of the Cretaceous Kizildag (Turkey) Ophiolite: Model for Multi-stage Early Arc/Fore-arc Magmatism in Tethyan Subduction Factories. Lithos, 2009, 113(1–2): 68-87.

[34]

Echeverria L. M.. Tertiary or Mesozoic Komatiites from Gorgona Island, Colombia: Field Relations and Geochemistry. Contributions to Mineralogy and Petrology, 1980, 73(3): 253-266.

[35]

Edwards, S. J., Pearce, J. A., Freeman, J., 2000. New Insights Concerning the Influence of Water during the Formation of Podiform Chromitite. In: Dilek, Y., Moores, E., Elthon, D., et al., eds., Ophiolites and Oceanic Crust, New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 349: 139–148

[36]

Evans B. W., Frost B. R.. Chrome-Spinels in Progressive Metamorphism—A Preliminary Analysis. Geochimicia et Cosmochimicia Acta, 1975, 39: 959-972.

[37]

Fang L., Friend C. R. L., Li Q., . Geology of the Santunying Area of Eastern Hebei Province, 1998, Beijing: Geological Publishing House 134

[38]

Faure M., Trap P., Lin W., . Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt—New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 2007, 30(2): 96-107.

[39]

Festa A., Pini G. A., Dilek Y., . Peri-Adriatic Mélanges and Their Evolution in the Tethyan Realm. International Geology Review, 2009, 52(4–6): 369-403.

[40]

Festa A., Pini G. A., Dilek Y., . Mélanges and Mélange-Forming Processes: A Historical Overview and New Concepts. International Geology Review, 2010, 52(10–12): 1040-1105.

[41]

Furnes H., De-Wit M. J., Staudigel H., . A Vestige of Earth’s Oldest Ophiolite. Science, 2007, 315(5819): 1704-1707.

[42]

Furnes, H., De-Wit, M. J., Staudigel, H., et al., 2007b. Response to Comments on “A Vestige of Earth’s Oldest Ophiolite”. Science, 318(5851), doi: 10.1126/science.1144231

[43]

Furnes H., Rosing M., Dilek Y., . Isua Supracrustal Belt (Greenland)—A Vestige of a 3.8 Ga Suprasubduction Zone Ophiolite, and the Implications for Archean Geology. Lithos, 2009, 113(1–2): 115-132.

[44]

Gao S., Rudnick R. L., Carlson R. W., . Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 2002, 198(3–4): 307-322.

[45]

Gao S., Zhang J. F., Xu W. L., . Delamination and Destruction of the North China Craton. Chinese Science Bulletin, 2009, 54(14): 1962-1973.

[46]

Gass I. G., Lippard S. J., Shelton A. W.. Ophiolites and Oceanic Lithosphere, 1984, Oxford: Blackwell Scientific, The Geological Society Special Publication 413

[47]

Gornostayev S. S., Walker R. J., Hanski E. J., . Evidence for the Emplacement of ca. 3.0 Ga Mantle-Derived Mafic-Ultramafic Bodies in the Ukrainian Shield. Precambrian Res., 2004, 132: 349-362.

[48]

Griffin, W. L., Zhang, A., O’Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In: Conference on Mantle Dynamics and Plate Interactions in East Asia. A.G.U. Geodynamics, 27: 107–126

[49]

Guan H., Sun M., Wilde S. A., . SHRIMP U-Pb Zircon Geochronology of the Fuping Complex: Implications for Formation and Assembly of the North China Craton. Precambrian Research, 2002, 113: 1-18.

[50]

Harper G. D.. Dismembered Archean Ophiolite, Wind River Mountains, Wyoming (USA). Ofioliti, 1985, 10(2–3): 297-305.

[51]

Harper G. D.. Structural Styles of Hydrothermal Discharge in Ophiolite/Sea-Floor Systems. Reviews in Economic Geology, 1999, 8: 53-73.

[52]

He G. P., Lu L. Z., Ye H. W.. The Early Precambrian Metamorphic Evolution of the Eastern Hebei and the Southeastern Inner Mongolia, 1991, Changchun: Jilin University Press 1 17

[53]

He T. X., Lin Q., Fang Z. R., . The Petrogenesis of Granitic Rocks in Eastern Hebei, 1992, Changchun: Jilin Science and Tech nology Press 1 4

[54]

Helmstaedt H., Padgham W. A., Brophy J. A.. Multiple Dikes in the Lower Kam Group, Yellowknife Greenstone Belt: Evidence for Sea-Floor Spreading?. Geology, 1986, 14: 562-566.

[55]

Holtzman, B., 2000. Gauging Stress from Mantle Chromitite Pods in the Oman Ophiolite. In: Dilek, Y., Moores, E. M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 349: 149–158

[56]

Huang, X. N., Li, J. H., Kusky, T. M., et al., 2004. Microstructures of the Zunhua 2.50 Ga Podiform Chromite, North China Craton and Implications for the Deformation and Rheology of the Archean Oceanic Lithospheric Mantle. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13:321–337

[57]

Huson, R., Kusky, T. M., Li, J. H., 2004. Geochemical and Petrographic Characteristics of the Central Belt of the Archean Dongwanzi Ophiolite Complex. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 283–320

[58]

Irvine T. N.. Chromian Spinel as a Petrogenetic Indicator: Part 1, Theory. Canadian Journal of Earth Science, 1965, 2: 648-672.

[59]

Irvine T. N.. Chromian Spinel as a Petrogenetic Indicator: Part 2, Petrologic Applications. Canadian Journal of Earth Science, 1967, 4(1): 71-103.

[60]

Jahn B. M., Auvray B., Cornichet J., . 3.5 Ga Old Amphibolites from Eastern Hebei Province, China: Field Occurrence, Petrography, Sm-Nd Isochron Age and REE Geochemistry. Precambrian Research, 1987, 34(3–4): 311-346.

[61]

Jahn B. M., Zhang Z. Q.. Archean Granulite Gneisses from Eastern Hebei Province, China: Rare Earth Geochemistry and Tectonic Implications. Contributions to Mineralogy and Petrology, 1984, 85(3): 224-243.

[62]

Jahn B. M., Zhang Z. Q.. Kroener A., Hanson G., Goodwin A.. Radiometric Ages (Rb-Sr, Sm-Nd, U-Pb) and REE Geochemistry of Archaean Granulite Gneisses from Eastern Hebei Province, China. Archaean Geochemistry, 1984, Berlin: Springer-Verlag 204 234

[63]

Jan M. Q., Windley B. F.. Chromian Spinel-Silicate Chemistry in Ultramafic Rocks of the Jijal Complex, Northwest Pakistan. Journal of Petrology, 1990, 31(3): 667-715.

[64]

Johnson, P. R., Kattan, F. H., Al-Saleh, A. M., 2004. Neoproterozoic Ophiolites in the Arabian Shield: Field Relations and Structure. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 129–162

[65]

Johnston W. D.. Nodular, Orbicular, and Banded Chromite in Northern California. Economic Geology, 1936, 31: 417-427.

[66]

Kamenetsky V. S., Crawford A. J., Meffre S.. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 2001, 42(4): 655-671.

[67]

Karson J. A.. Oceanic Crust when Earth was Young. Science, 2001, 292(5519): 1076-1077.

[68]

Kelemen P. B.. Reaction between Ultramafic Rock and Fractionating Basaltic Magma: I. Phase Relations, the Origin of Cal-Alkaline Magma Series and the Formation of Discordant Dunite. Journal of Petrology, 1990, 31(1): 51-98.

[69]

Kelemen P. B., Joyce D. B., Webster J. D., . Reaction between Ultramafic Rock and Fractionating Basaltic Magma: II. Experimental Investigation of Reaction between Olivine Tholeiite and Harzburgite at 1 150–1 050 Degrees C and 5 kb. Journal of Petrology, 1990, 31(1): 99-134.

[70]

Kepezhinskas P. K., Taylor R. N., Tanaka H.. Geochemistry of Plutonic Spinels from the North Kamchatka Arc: Comparisons with Spinels from Other Tectonic Settings. Mineralogical Magazine, 1993, 57: 575-589.

[71]

Kontinen A.. An Early Proterozoic Ophiolite—The Jormua Mafic-Ultramafic Complex, Northeastern Finland. Precambrian Research, 1987, 35: 313-341.

[72]

Kroener A.. Ophiolites and the Evolution of Tectonic Boundaries in the Late Proterozoic Arabian-Nubian Shield of Northeast Africa and Arabia. Precambrian Research, 1985, 27(1–3): 277-300.

[73]

Kroener A., Cui W. Y., Wang S. Q., . Single Zircon Ages from High-Grade Rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asia Earth Sciences, 1998, 16(5–6): 519-532.

[74]

Kroener A., Wilde S. A., Li J. H., . Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrane of Northern China. Journal of Asian Earth Sciences, 2005, 24(5): 577-595.

[75]

Kusky T. M.. Comment and Reply on “Multiple Dikes in the Lower Kam Group, Yellowknife Greenstone Belt: Evidence for Archean Sea-Floor Spreading?”: Comment. Geology, 1987, 15: 280-281.

[76]

Kusky T. M.. Evidence for Archean Ocean Opening and Closing in the Southern Slave Province. Tectonics, 1990, 9(6): 1533-1563.

[77]

Kusky T. M.. Structural Development of an Archean Orogen, Western Point Lake, Northwest Territories. Tectonics, 1991, 10(4): 820-841.

[78]

Kusky T. M.. Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 2004, 13: 727-737.

[79]

Kusky, T. M., Li, J. H., 2002. Is the Dongwanzi Complex an Archean Ophiolite? Response to Zhai, M., Zhao, G., Zhang, Q.. Science, 295(5557)

[80]

Kusky T. M., Li J. H.. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.

[81]

Kusky T. M., Li J. H., Tucker R. D.. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505 Billion Year Old Oceanic Crust and Mantle. Science, 2001, 292(5519): 1142-1145.

[82]

Kusky, T. M., Glass, A., Tucker, R., 2007a. Structure, Cr-Chemistry, and Age of the Border Ranges Ultramafic-Mafic Complex: A Suprasubduction Zone Ophiolite Complex. In: Ridgway, K. D., Trop, J. M., Glen, J. M. G., et al., eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska. Geological Society of America Special Paper, 207–225

[83]

Kusky, T. M., Windley, B. F., Zhai, M. G., 2007b. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 1–34

[84]

Kusky, T. M., Li, J. H., Santosh, M., 2007c. The Paleoproterozoic North Hebei Orogen: North China Craton’s Collisional Suture with the Columbia Supercontinent. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 4–28

[85]

Kusky, T. M., Zhi, X. C., Li, J. H., et al., 2007d. Chondritic Osmium Isotopic Composition of Archean ophiolitic Mantle, North China Craton. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 67–76

[86]

Kusky, T. M., Polat, A., 1999. Growth of Granite-Greenstone Terranes at Convergent Margins and Stabilization of Archean Cratons. In: Marshak, S., Van Der Pluijm, B. A., Hamburger, M., eds., The Tectonics of Continental Interiors. Tectonophysics, 305(1–3): 43–73

[87]

Kusky, T. M., Santosh, M., 2009. The Columbia Connection in North China. In: Reddy, S. M., Mazumder, R., Evans, D. A. D., et al., eds., Palaeoproterozoic Supercontinents and Global Evolution. Geological Society of London Special Publication, 323: 49–71

[88]

Kusky, T. M., Vearncombe, J., 1997. Structure of Archean Greenstone Belts. In: De-Wit, M. J., Ashwal, L. D., eds., Tectonic Evolution of Greenstone Belts. Oxford Monograph on Geology and Geophysics, 35: 95–128

[89]

Kusky T. M., Young C. P.. Emplacement of the Resurrection Peninsula Ophiolite in the Southern Alaska Forearc during a Ridge-Trench Encounter. Journal of Geophysical Research, 1999, 104(B12): 2925-2954.

[90]

Lago B. L., Rabinowicz M., Nicolas A.. Podiform Chromite Ore Bodies: A Genetic Model. Journal of Petrology, 1982, 23(1): 103-125.

[91]

LeBlanc M.. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia: Reply. Economic Geology, 1997, 92: 503-504.

[92]

LeBlanc M., Nicholas A.. Ophiolitic Chromitites. International Geology Review, 1992, 34: 653-686.

[93]

Li, J. H., Kusky, T. M., 2007a. World’s Largest Known Precambrian Fossil Black Smoker Chimneys and Associated Microbial Vent Communities, North China: Implications for Early Life. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 84–100

[94]

Li J. H., Kroener A., Qian X. L., . Tectonic Evolution of an Early Precambrian High-Pressure Granulite Belt, North China Craton (NCC). Acta Geologica Sinica, 2000, 74(2): 246-256.

[95]

Li, J. H., Kusky, T. M., 2007b. A Late Archean Foreland Fold and Thrust Belt in the North China Craton: Implications for Early Collisional Tectonics. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Special Issue of Gondwana Research, 12(1–2): 47–66

[96]

Li J. H., Kusky T. M., Huang X. N.. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes. GSA Today, 2002, 12(7): 4-11.

[97]

Li, J. H., Kusky, T. M., Niu, X. L., et al., 2004. Neo-Archean Massive Sulfide of Wutai Mountain, North China: A Black Smoker Chimney and Mound Complex within 2.50-Ga-Old Oceanic Crust. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 339–362

[98]

Li J. H., Qian X. L., Huang X. N., . Basement Tectonic Framework of the North China Platform and Its Cratonization in the Early Precambrain. Acta Petrologica Sinica, 2000, 16(1): 1-10.

[99]

Li J. H., Qian X. L., Gu Y. C.. Outline of Paleoproterozoic Tectonic Division and Plate Tectonic Evolution of North China Platform. Earth Science, 1998, 23(3): 230-235.

[100]

Lippard S. J., Shelton A. W., Gass I. G.. The Ophiolite of Northern Oman. Geological Society of London Memoir, 1986, 11 178

[101]

Liu D. Y., Wilde S. A., Wan Y. S., . Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 2009, 261(1–2): 139-153.

[102]

Liu S., Pan Y., Xie Q., . Archean Geodynamics in the Central Zone, North China Craton: Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precambrian Research, 2004, 130: 229-249.

[103]

MacLachlan K., Helmstaedt H.. Geology and Geochemistry of an Archean Mafic Dike Complex in the Chan Formation: Basis for a Revised Plate-Tectonic Model of the Yellowknife Greenstone Belt. Canadian Journal of Earth Science, 1995, 32(5): 614-630.

[104]

Matsumoto I., Arai S.. Morphological Variations of Chromian Spinel in Dunite and Harzburgite from the Sangun Zone, Southwest Japan, as a Marker of Melt/Peridotite Reaction. Science Reports of the Kanazawa University, 1999, 44(1–2): 11-24.

[105]

Matveev S., Ballhaus C.. Role of Water in the Origin of Podiform Chromite Deposits. Earth and Planetary Science Letters, 2002, 203(1): 235-243.

[106]

Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of >120 km of Archaean Lithosphere, Sino-Korean Craton, China. In: Prichard, H. M., Alabaster, T., Harris, N. B., et al., eds., Magmatic Processes and Plate Tectonics. Geological Society Special Publications, 76: 71–81

[107]

Moores E. M.. Origin and Emplacement of Ophiolites. Reviews of Geophysics and Space Physics, 1982, 20(4): 735-760.

[108]

Moores E. M.. Pre-1 Ga (Pre-Rodinian) Ophiolites: Their Tectonic and Environmental Implications. Geological Society of America Bulletin, 2002, 114: 80-95.

[109]

Nicolas A.. Structures of Ophiolites and Dynamics of Oceanic Lithosphere, 1989, Boston: Kluwer Academic Publishers 367

[110]

Nicolas, A., Al-Azri, H., 1991. Chromite-Rich and Chromite-Poor Ophiolites: The Oman Case. In: Peters, T. J., Nicolas, A., Coleman, R. G., eds., Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, 5: 261–274

[111]

Nicolas, A., Boudier, F., 2000. Large Mantle Upwellings and Related Variations in Crustal Thickness in the Oman Ophiolite. In: Dilek, Y., Moores, E. M., Elthon, D., et al., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America Special Paper, 349: 67–73

[112]

O’Brien P. J., Walte N., Li J. H.. The Petrology of Two Distinct Granulite Types in the Hengshan Mtns., China, and Tectonic Implications. Journal of Asian Earth Sciences, 2005, 24(5): 615-627.

[113]

Orberger B., Lorand J. P., Girardeau J., . Petrogenesis of Ultramafic Rocks and Associated Chromitites in the Nan Uttaradit Ophiolite, Northern Thailand. Lithos, 1995, 35(3–4): 153-182.

[114]

Parkinson I. J., Pearce J. A.. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 1998, 39(9): 1577-1618.

[115]

Parson L. M., Murton B. J., Browning P.. Ophiolites and Their Modern Oceanic Analogues. Geological Society Special Publication, 1992, 60 330

[116]

Peltonen, P., Kontinen, A., 2004. The Jormua Ophiolite: A Mafic-Ultramafic Complex from an Ancient Ocean-Continent Transition Zone. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 35–72

[117]

Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dikes in the Central North China Craton. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Gondwana Research, 12(1–2): 29–46

[118]

Peters T. J., Nicolas A., Coleman R. G.. Ophiolite Genesis and Evolution of the Oceanic Lithosphere, 1991, Boston: Kluwer Academic Publishers 903

[119]

Phillips-Lander C. M., Dilek Y.. Structural Architecture of the Sheeted Dike Complex and Extensional Tectonics of the Jurassic Mirdita Ophiolite, Albania. Lithos, 2008, 108(1–4): 192-206.

[120]

Polat A., Herzberg C., Münker C., . Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton. Geological Society of America Bulletin, 2006, 118: 771-784.

[121]

Polat A., Kusky T. M., Li J. H.. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth: Reply. Geological Society of America Bulletin, 2007, 119: 490-492.

[122]

Polat A., Kusky T. M., Li J. H., . Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth. Geological Society of America Bulletin, 2005, 117: 1387-1399.

[123]

Power M. R., Pirrie D., Anderson J. C., . Testing the Validity of Chrome Spinel Chemistry as a Provenance and Petrogenetic Indicate. Geology, 2000, 28: 1027-1030.

[124]

Proenza J., Gervilla F., Melgarejo J. C., . Al- and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba): Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle. Economic Geology, 1999, 94: 547-566.

[125]

Rasmussen B.. Filamentous Microfossils in a 3.235 Million Year-Old Volcanogenic Massive Sulphide Deposit. Nature, 2000, 405(6787): 676-679.

[126]

Reed, C., 2002. Chimneys from an Ancient Ocean. Geotimes, 23

[127]

Regional Geological Survey Team of Hebei Geology and Mineral Resources Bureau, 1988. Regional Geology Survey Reports of Xiabancheng Breadth, Breadth and Taipingzhai Breadth. 1: 50 000 (in Chinese)

[128]

Robinson P. T., Malpas J., Dilek Y., . The Significance of Sheeted Dike Complexes in Ophiolites. GSA Today, 2009, 18(11): 4-11.

[129]

Roeder P. L., Reynolds I.. Crystallisation of Chromite and Chromium Solubility in Basaltic Melts. Journal of Petrology, 1991, 32: 909-934.

[130]

Scott D. J., Helmstaedt H., Bickle M. J.. Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada: A Reconstructed Section of Early Proterozoic Oceanic Crust. Geology, 1992, 20: 173-176.

[131]

Scott, D. J., St. Onge, M. R., Lucas, S. B., et al., 1991. Geology and Chemistry of the Early Proterozoic Purtuniq Ophiolite, Cape Smith Belt, Northern Quebec, Canada. In: Peters, T. J., ed., Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, 5: 817–849

[132]

Shen Q. H., Xu H. F., Zhang Z. Q.. The Early Precambrian Granulites in China, 1992, Beijing: Geological Publishing House 134 140

[133]

Shervais J. W.. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 1982, 59(1): 101-118.

[134]

Shervais, J., 2003. Ophiolites and Oceanic Crust, New Insights from Field Studies and the Ocean Drilling Program. In: Dilek, Y., Moores, E., Elthon, D., et al., eds., Geological Society of America Special Paper, 349: 552

[135]

Shirey S. B., Walker R. J.. The Re-Os Isotope System in Cosmochemistry and High Temperature Geochemistry. Annu. Rev. Earth Planet. Sci., 1998, 26: 423-500.

[136]

Sleep N. H., Windley B. F.. Archean Plate Tectonics: Constraints and Inferences. Journal of Geology, 1982, 90(4): 363-379.

[137]

Stern, R. J., Johnson, P. R., Kroener, A., et al., 2004. Neoproterozoic Ophiolites of the Arabian-Nubian Shield. In: Kusky, T. M., ed., Precambrian Ophiolites and Related Rocks. Developments in Precambrian Geology, 13: 95–128

[138]

Stowe C. W.. Stowe C. W.. Chromite Deposits of the Shurugwi Greenstone Belt, Zimbabwe. Evolution of Chromium Ore Fields, 1987, New York: Van Nostrand-Reinhold 71 88

[139]

Stowe C. W.. Compositions and Tectonic Settings of Chromite Deposits through Time. Economic Geology, 1994, 89: 528-546.

[140]

Sylvester, P. J., Harper, G. D., Byerly, G. R., et al., 1997. Volcanic Aspects. In: De-Wit, M. J., Ashwal, L. D., eds., Greenstone Belts. Oxford Monographs on Geology and Geophysics, 35: 55–90

[141]

Thayer, T. P., 1969. Gravity Differentiation and Magmatic Re-emplacement of Podiform Chromite Deposits. In: Magmatic Ore Deposits. Economic Geology Monographs, 4: 132–146

[142]

Tian Y. Q.. Geology and Mineralization of the Wutai-Hengshan Greenstone Belt, 1991, Taiyuan: Shanxi Science and Technology Press 137 152

[143]

Tsuru A., Walker R. J., Kontinen A., . Re-Os Isotopic Systematics of the Jormua Ophiolite Complex, NW Finland. Chem. Geol., 2000, 164: 123-141.

[144]

Ulmer C. G.. Alteration of Chromite during Serpentinization in the Pennsylvania-Maryland District. American Mineralogist, 1974, 59(11–12): 1236-1241.

[145]

Vuollo J., Liipo J., Nykanen V., . An Early Proterozoic Podiform Chromitite in the Outokumpu Ophiolite Complex, Finland. Economic Geology, 1995, 90: 445-452.

[146]

Walker R. J., Prichard H. M., Ishiwatari A., . The Osmium Isotope Composition of Convecting Upper Mantle Deduced from Ophiolite Chromites. Geochim. Cosmochim. Acta, 2002, 66: 329-345.

[147]

Wan Y. S., Geng Y. S., Wu J. S.. Cheng Y. Q.. The Geochemistry of Early Precambrian Metabasaltic Rocks of North China Craton. Proceeding of Precambrian Geology of North China Craton, 1998, Beijing: Geological Publishing House 39 59

[148]

Wang K. Y., Li J. L., Hao J.. Late Archaean Mafic-Ultramafic Rocks from the Wutaishan, Shanxi Province: A Possible Ophiolite Mélange. Acta Petrologica Sinica, 1997, 13(2): 139-151.

[149]

Wang K. Y., Li J. L., Hao J., . The Wutaishan Orogenic Belt within the Shanxi Province, Northern China: A Record of Archean Collision Tectonics. Precambrian Research, 1996, 78: 95-103.

[150]

Wang Q. C., Zhang S. Q.. The Age of the Hongqiyingzi Group: A Further Discussion. Regional Geology of China, 1995, 2: 173-180.

[151]

Wang Z., Wilde S. A., Wang K., . A MORB Arc Basalt-Adakite Association in the 2.5 Ga Wutai Greenstone Belt: Late Archean Magmatism and Crust Growth in the North China Craton. Precambrian Research, 2004, 131: 323-343.

[152]

Wilde S. A., Cawood P. A., Wang K. Y., . SHRIMP U-Pb Zircon Dating of Granites and Gneisses in the Taihangshan-Wutaishan Area: Implications for the Timing of Crustal Growth in the North China Craton. Chinese Science Bulletin, 1998, 43(Suppl.): 144-145.

[153]

Wilde S. A., Zhao G. C., Sun M.. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 2002, 5(1): 85-94.

[154]

Wilde S. A., Zhao G. C., Wang K. Y., . First SHRIMP Zircon U-Pb Ages for the Hutuo Group, Wutaishan: Further Evidence for Palaeoproterozoic Amalgamation of the North China Craton. Chinese Science Bulletin, 2004, 49(1): 83-90.

[155]

Wilde S. A., Zhou X. H., Nemchin A. A., . Mesozoic Crust-Mantle Interaction beneath the North China Craton: A Consequence of the Dispersal of Gondwanaland and Accretion of Asia. Geology, 2003, 31: 817-820.

[156]

Wilks, M. E., Harper, G. D., 1997. Wind River Range, Wyoming Craton. In: De-Wit, M. J., Ashwal, L. D., eds., Greenstone Belts. Oxford Monograph on Geology and Geophysics, 35: 508–516

[157]

Wood B. J., Virgo D.. Upper Mantle Oxidation State: Ferric Iron Contents of Lherzolite Spinels by 57Fe Moessbauer Spectroscopy and Resultant Oxidation Fugacities. Geochimica et Cosmochimica Acta, 1989, 53(6): 1277-1291.

[158]

Wu C. H., Zhong C. T.. The Paleoproterozoic SW-NE Collision Model for the Central North China Craton: Implications for Tectonic Regime of the Khondalite Downward into Lower Crust in Jinmeng High-Grade Region. Progress of Precambrian Research, 1998, 21(3): 28-50.

[159]

Wu J. S., Geng Y. S., Shen Q. H.. Archean Geology Characteristics and Tectonic Evolution of Sino-Korea Paleocontinent, 1998, Beijing: Geological Publishing House 1 104

[160]

Wu J. S., Geng Y. S., Shi Q. H.. The Precambrian Major Geological Events of North China Craton, 1992, Beijing: Geological Publishing House 1 10

[161]

Xu Z. G.. Mesozoic Volcanism and Volcanogenic Iron Ore Deposits in Eastern China. Geological Society of America Special Paper, 1990, 237 46

[162]

Zhai M. G., Windley B. F., Kusky T. M., . Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 2007, 280 352

[163]

Zhang Q. S., Yang Z. S., Gao D. Y.. The Archean High-Grade Metamorphic Geology and Gold Deposits in Jinchangyu Area of Eastern Hebei, 1991, Beijing: Geological Publishing House 1 5

[164]

Zhang Y. X., Ye T. S., Yang H. Q.. The Archean Geology and Banded Iron Formation of Jidong, Hebei Province, 1986, Beijing: Geological Publishing House 1 22

[165]

Zhao G. C.. Paleoproterozoic Assembly of the North China Craton. Geological Magazine, 2001, 138: 87-91.

[166]

Zhao G. C., Sun M., Wilde S. A., . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.

[167]

Zhao G. C., Wilde S. A., Cawood P. A., . Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 2001, 107(1–2): 45-73.

[168]

Zhao G. C., Wilde S. A., Li S. Z., . U-Pb Zircon Age Constraints on the Dongwanzi Ultramafic-Mafic Body, North China, Confirm It is not an Archean Ophiolite. Earth and Planetary Science Letters, 2009, 273(1–2): 231-234.

[169]

Zhao, G., Kröner, A., 2002, Introduction. In: Kröner, A., Zhao, G. C., Wilde, S. A., et al., eds., Late Archean to Paleoproterozoic Lower to Upper Crustal Section in the Hengshan-Wutaishan Area of North China. Guidebook for Penrose Conference Field Trip. 1–2

[170]

Zhao Z. P.. The Precambrian Geological Evolution of Sino-Korean Paraplatform, 1993, Beijing: Science Press 1 83

[171]

Zheng Y. F., Wu F. Y.. Growth and Reworking of Cratonic Lithosphere. Chinese Science Bullein, 2009, 54(14): 1945-1949.

[172]

Zheng Z., O’Reilly S. Y., Griffin, . Nature and Evolution of Cenozoic Lithospheric Mantle beneath Shandong Peainsula, Sino-Korean Craton, Eastern China. International Geology Review, 1998, 40: 471-499.

[173]

Zhou M. F., Kerrich R.. Morphology and Composition of Chromite in Komatiites from the Belingwe Greenstone Belt, Zimbabwe. Canadian Mineralogist, 1992, 30: 303-317.

[174]

Zhou M. F., Robinson P. T.. Origin and Tectonic Environment of Podiform Chromite Deposits. Economic Geology, 1997, 92: 259-262.

[175]

Zhou M. F., Robinson P. T., Bai W. J.. Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle. Mineralium Deposita, 1994, 29(1): 98-101.

[176]

Zhou M. F., Robinson P. T., Malpas J., . Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 1996, 37(1): 3-21.

[177]

Zhu R. X., Zheng T. Y.. Destruction Geodynamics of the North China Craton and Its Paleoproterozoic Plate Tectonics. Chinese Science Bulletin, 2009, 54(14): 1950-1961.

[178]

Ziegler A. M., Rees P. M., Rowley D. B., . Yin A., Harrison T. M., . Mesozoic Assembly of Asia: Constraints from Fossil Floras, Tectonics, and Paleomagnetism. The Tectonic Evolution of Asia, 1996, London: Cambridge University Press 371 400

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/