Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene

Haemyeong Jung , Munjae Park , Sejin Jung , Jaeseok Lee

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 555 -568.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 555 -568. DOI: 10.1007/s12583-010-0118-9
Article

Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene

Author information +
History +
PDF

Abstract

Lattice preferred orientation (LPO) and seismic anisotropy of orthopyroxene (enstatite) in mantle xenoliths from Spitsbergen, Svalbard, near the Arctic, are studied. LPOs of enstatite were determined using electron backscattered diffraction (EBSD). We found four types of LPOs of orthopyroxene and defined them as type-AC, -AB, -BC, and -ABC. Type-AC LPO of orthopyroxene is defined as (100) plane aligned subparallel to foliation and [001] axis aligned subparallel to lineation. Type-AB LPO is defined as (100) plane aligned subparallel to foliation and [010] axis aligned subparallel to lineation. Type-BC LPO is defined as (010) plane aligned subparallel to foliation and [001] axis aligned subparallel to lineation. Type-ABC LPO is defined as both (100) and (010) planes aligned subparallel to foliation with a girdle distribution of both [100] and [010] axes normal to lineation and [001] axis aligned subparallel to lineation. We report for the first time the type-AB, -BC, and -ABC LPO of orthopyroxene. We found that the LPO pattern has a correlation with the content of orthopyroxene in the specimen. Nicolet 6700 FTIR (Fourier transformation infrared) study of enstatite showed that type-AC LPO was observed mostly in the samples of enstatite with low water content. It is found that the strength of the LPO of enstatite decreases with increasing water content and has a correlation with the strength of the LPO of olivine: the stronger the LPO of enstatite, the stronger the LPO of olivine. Seismic anisotropy of enstatite was smaller than that of olivine in the same specimen.

Keywords

orthopyroxene / lattice preferred orientation / seismic anisotropy / mantle xenolith / Spitsbergen / FTIR

Cite this article

Download citation ▾
Haemyeong Jung, Munjae Park, Sejin Jung, Jaeseok Lee. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. Journal of Earth Science, 2010, 21(5): 555-568 DOI:10.1007/s12583-010-0118-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amundsen H. E. F., Griffin W. L., O’Reilly S. Y.. The Lower Crust and Upper Mantle beneath Northwestern Spitsbergen: Evidence from Xenoliths and Geophysics. Tectonophysics, 1987, 139(3–4): 169-185.

[2]

Bell D. R., Ihinger P. D., Rossman G. R.. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 1995, 80(5–6): 465-474.

[3]

Ben-Ismail W., Mainprice D.. An Olivine Fabric Database: An Overview of Upper Mantle Fabrics and Seismic Anisotropy. Tectonophysics, 1998, 296(1–2): 145-157.

[4]

Brey G. P., Köhler T.. Geothermobarometry in Four-Phase Lherzolites: II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 1990, 31(6): 1353-1378.

[5]

Bystricky M., Kunze K., Burlini L., . High Shear Strain of Olivine Aggregates: Rheological and Seismic Consequences. Science, 2000, 290(5496): 1564-1567.

[6]

Carter N. L., Avé-Lallemant H. G.. High Temperature Flow of Dunite and Peridotite. Geological Society of America Bulletin, 1970, 81(8): 2181-2202.

[7]

Chai M., Brown J. M., Slutsky L. J.. The Elastic Constants of an Aluminous Orthopyroxene to 12.5 GPa. Journal of Geophysical Research—Solid Earth, 1997, 102(B7): 14779-14785.

[8]

Christensen N. I., Lundquist S. M.. Pyroxene Orientation within the Upper Mantle. Geological Society of America Bulletin, 1982, 93(4): 279-288.

[9]

Dingley D. J.. Diffraction from Sub-micron Areas Using Electron Backscattering in a Scanning Electron Microscope. Scanning Electron Microscopy, 1984, 2: 569-575.

[10]

Grant K., Ingrin J., Lorand J. P., . Water Partitioning between Mantle Minerals from Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 2007, 154(1): 15-34.

[11]

Grant K. J., Kohn S. C., Brooker R. A.. The Partitioning of Water between Olivine, Orthopyroxene and Melt Synthesised in the System Albite-Forsterite-H2O. Earth and Planetary Science Letters, 2007, 260(1–2): 227-241.

[12]

Green H. W., Radcliffe S. V.. Deformation Processes in the Upper Mantle. Geophysical Monograph, 1972, 16: 139-156.

[13]

Hidas K., Falus G., Szabo C., . Geodynamic Implications of Flattened Tabular Equigranular Textured Peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 2007, 43(4–5): 484-503.

[14]

Ionov D. A., Bodinier J. L., Mukasa S. B., . Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modelling. Journal of Petrology, 2002, 43(12): 2219-2259.

[15]

Ishii K., Sawaguchi T.. Lattice- and Shape-Preferred Orientation of Orthopyroxene Porphyroclasts in Peridotites: An Application of Two-Dimensional Numerical Modeling. Journal of Structural Geology, 2002, 24(3): 517-530.

[16]

Jahn S., Martonak R.. Plastic Deformation of Orthoenstatite and the Ortho- to High-Pressure Clinoenstatite Transition: A Metadynamics Simulation Study. Physics and Chemistry of Minerals, 2008, 35(1): 17-23.

[17]

Jung H.. Deformation Fabrics of Olivine in Val Malenco Peridotite Found in Italy and Implications for the Seismic Anisotropy in the Upper Mantle. Lithos, 2009, 109(3–4): 341-349.

[18]

Jung H., Karato S. I.. Water-Induced Fabric Transitions in Olivine. Science, 2001, 293(5534): 1460-1463.

[19]

Jung H., Katayama I., Jiang Z., . Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophysics, 2006, 421(1–2): 1-22.

[20]

Jung H., Mo W., Choi S. H.. Deformation Microstructures of Olivine in Peridotite from Spitsbergen, Svalbard and Implications for Seismic Anisotropy. Journal of Metamorphic Geology, 2009, 27(9): 707-720.

[21]

Jung H., Mo W., Green H. W.. Upper Mantle Seismic Anisotropy Resulting from Pressure-Induced Slip Transition in Olivine. Nature Geoscience, 2009, 2(1): 73-77.

[22]

Kamei A., Obata M., Michibayashi K., . Two Contrasting Fabric Patterns of Olivine Observed in Garnet and Spinel Peridotite from a Mantle-Derived Ultramafic Mass Enclosed in Felsic Granulite, the Moldanubian Zone, Czech Republic. Journal of Petrology, 2010, 51(1–2): 101-123.

[23]

Katayama I., Jung H., Karato S. I.. New Type of Olivine Fabric from Deformation Experiments at Modest Water Content and Low Stress. Geology, 2004, 32(12): 1045-1048.

[24]

Katayama I., Karato S. I.. Effect of Temperature on the B- to C-Type Olivine Fabric Transition and Implication for Flow Pattern in Subduction Zones. Physics of the Earth and Planetary Interiors, 2006, 157(1–2): 33-45.

[25]

Katayama I., Karato S. I., Brandon M.. Evidence of High Water Content in the Deep Upper Mantle Inferred from Deformation Microstructures. Geology, 2005, 33(7): 613-616.

[26]

Kohlstedt D. L., Vander-Sande J. B.. Transmission Electron Microscopy Investigation of Defect Microstructure of Four Natural Orthopyroxenes. Contributions to Mineralogy and Petrology, 1973, 42(2): 169-180.

[27]

Lloyd G. E.. Atomic Number and Crystallographic Contrast Images with the SEM: A Review of Backscattered Electron Techniques. Mineralogical Magazine, 1987, 51(359): 3-19.

[28]

Mainprice D.. A Fortran Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 1990, 16(3): 385-393.

[29]

Mainprice D., Barruol G., Ismail W. B.. The Seismic Anisotropy of the Earth’s Mantle from Single Crystal to Polycrystal. Geophysical Monograph, 2000, 117: 237-264.

[30]

Mercier J. C., Nicolas A.. Textures and Fabrics of Upper-Mantle Peridotites as Illustrated by Xenoliths from Basalts. Journal of Petrology, 1975, 16(2): 454-487.

[31]

Michibayashi K., Ina T., Kanagawa K.. The Effect of Dynamic Recrystallization on Olivine Fabric and Seismic Anisotropy: Insight from a Ductile Shear Zone, Oman Ophiolite. Earth and Planetary Science Letters, 2006, 244(3–4): 695-708.

[32]

Michibayashi, K., Oohara, T., Satsukawa, T., et al., 2009. Rock Seismic Anisotropy of the Low-Velocity Zone beneath the Volcanic Front in the Mantle Wedge. Geophysical Research Letters, 36

[33]

Mizukami T., Wallis S. R., Yamamoto J.. Natural Examples of Olivine Lattice Preferred Orientation Patterns with a Flow Normal a-Axis Maximum. Nature, 2004, 427(6973): 432-436.

[34]

Nicolas A., Christensen N. I.. Fuchs K., Froidevaux C.. Formation of Anisotropy in Upper Mantle Peridotite: A Review. Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System, 1987, Washington D.C.: Geodyn. AGU 111 123

[35]

Panozzo R. H.. Two-Dimensional Strain from the Orientation of Lines in a Plan. Journal of Structural Geology, 1984, 6(1–2): 215-221.

[36]

Paterson M. S.. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bull. Mineral., 1982, 105(1): 20-29.

[37]

Peslier A. H., Luhr J. F., Post J.. Low Water Contents in Pyroxenes from Spinel-Peridotites of the Oxidized, Sub-arc Mantle Wedge. Earth and Planetary Science Letters, 2002, 201(1): 69-86.

[38]

Prior D. J., Boyle A. P., Brenker F., . The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks. American Mineralogist, 1999, 84(11–12): 1741-1759.

[39]

Raleigh C. B.. Glide Mechanism in Experimentally Deformed Minerals. Science, 1965, 150(3697): 339-341.

[40]

Raleigh C. B., Kirby S. H., Carter N. L., . Slip and the Clinoenstatite Transformation as Competing Rate Processes in Enstatite. Journal of Geophysical Research, 1971, 76(17): 4011-4022.

[41]

Ringwood A. E.. Phase Transformations and the Constitution of the Mantle. Physics of the Earth and Planetary Interiors, 1970, 3: 109-155.

[42]

Ross J. V., Nielsen K. C.. High-Temperature Flow of Wet Polycrystalline Enstatite. Tectonophysics, 1978, 44(1–4): 233-261.

[43]

Sawaguchi T.. Deformation History and Exhumation Process of the Horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 2004, 379(1–4): 109-126.

[44]

Skemer P., Katayama I., Jiang Z. T., . The Misorientation Index: Development of a New Method for Calculating the Strength of Lattice-Preferred Orientation. Tectonophysics, 2005, 411(1–4): 157-167.

[45]

Skemer P., Katayama I., Karato S. I.. Deformation Fabrics of the Cima di Gagnone Peridotite Massif, Central Alps, Switzerland: Evidence of Deformation at Low Temperatures in the Presence of Water. Contributions to Mineralogy and Petrology, 2006, 152(1): 43-51.

[46]

Skemer P., Warren J. M., Kelemen P. B., . Microstructural and Rheological Evolution of a Mantle Shear Zone. Journal of Petrology, 2010, 51(1–2): 43-53.

[47]

Skogby H., Bell D. R., Rossman G. R.. Hydroxide in Pyroxene-Variations in the Natural Environment. American Mineralogist, 1990, 75(7–8): 764-774.

[48]

Soustelle V., Tommasi A., Demouchy S., . Deformation and Fluid-Rock Interaction in the Supra-Subduction Mantle: Microstructures and Water Contents in Peridotite Xenoliths from the Avacha Volcano, Kamchatka. Journal of Petrology, 2009, 51(1–2): 363-394.

[49]

Tommasi A., Vauchez A., Ionov D. A.. Deformation, Static Recrystallization, and Reactive Melt Transport in Shallow Subcontinental Mantle Xenoliths (Tok Cenozoic Volcanic Field, SE Siberia). Earth and Planetary Science Letters, 2008, 272(1–2): 65-77.

[50]

Vanduysen J. C., Doukhan N., Doukhan J. C.. Transmission Electron Microscope Study of Dislocations in Ortho-Pyroxene (Mg, Fe)2Si2O6. Physics and Chemistry of Minerals, 1985, 12(1): 39-44.

[51]

Vauchez A., Dineur F., Rudnick R.. Microstructure, Texture and Seismic Anisotropy of the Lithospheric Mantle above a Mantle Plume: Insights from the Labait Volcano Xenoliths (Tanzania). Earth and Planetary Science Letters, 2005, 232(3–4): 295-314.

[52]

Vauchez A., Garrido C. J.. Seismic Properties of an Asthenospherized Lithospheric Mantle: Constraints from Lattice Preferred Orientations in Peridotite from the Ronda Massif. Earth and Planetary Science Letters, 2001, 192(2): 235-249.

[53]

Xu Z. Q., Wang Q., Ji S. C., . Petrofabrics and Seismic Properties of Garnet Peridotite from the UHP Sulu Terrane (China): Implications for Olivine Deformation Mechanism in a Cold and Dry Subducting Continental Slab. Tectonophysics, 2006, 421(1–2): 111-127.

[54]

Zhang S. Q., Karato S. I.. Lattice Preferred Orientation of Olivine Aggregates Deformed in Simple Shear. Nature, 1995, 375(6534): 774-777.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/