Acoustic velocities and elastic properties of pyrite (FeS2) to 9.6 GPa

Matthew L. Whitaker , Wei Liu , Liping Wang , Baosheng Li

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 792 -800.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 792 -800. DOI: 10.1007/s12583-010-0115-z
Article

Acoustic velocities and elastic properties of pyrite (FeS2) to 9.6 GPa

Author information +
History +
PDF

Abstract

Ultrasonic interferometry was utilized in conjunction with synchrotron-based X-ray diffraction and X-radiographic imaging to determine the compressional and shear wave velocities and unit-cell volumes of pyrite (FeS2) at room temperature and pressures up to 9.6 GPa. Fitting all of the experimental volume and velocity data to third-order finite-strain equations yielded the adiabatic zero-pressure bulk and shear moduli and their first pressure derivatives: K S0=138.9(7) GPa, G 0=112.3(3) GPa, ( K S0/ P) T=K S0′=6.0(1), ( G 0/ P) T=G 0′=3.0(<1), where the numbers in parentheses represent the 1σ uncertainty in the last significant digit. These results are in good agreement with several previous static compression studies on this material but differ quite strongly from the results obtained via first principles calculations. This study presents the first direct measurement of the bulk shear properties of this material.

Keywords

mineral physics / ultrasonic interferometry / high pressure / iron sulfide / elastic property / equation of state

Cite this article

Download citation ▾
Matthew L. Whitaker, Wei Liu, Liping Wang, Baosheng Li. Acoustic velocities and elastic properties of pyrite (FeS2) to 9.6 GPa. Journal of Earth Science, 2010, 21(5): 792-800 DOI:10.1007/s12583-010-0115-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahrens T. J., Jeanloz R.. Pyrite-Shock Compression, Isentropic Release, and Composition of the Earth’s Core. Journal of Geophysical Research, 1987, 92(B10): 10363-10375.

[2]

Badro J., Fiquet G., Guyot F., . Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth’s Core. Earth and Planetary Science Letters, 2007, 254(1–2): 233-238.

[3]

Benbattouche N., Saunders G. A., Lambson E. F., . The Dependences of the Elastic Stiffness Moduli and the Poisson Ratio of Natural Iron Pyrites FeS2 upon Pressure and Temperature. Journal of Physics D: Applied Physics, 1989, 22(5): 670-675.

[4]

Blanchard M., Alfredsson M., Brodholt J., . Electronic Structure Study of the High-Pressure Vibrational Spectrum of FeS2 Pyrite. Journal of Physical Chemistry B, 2005, 109(46): 22067-22073.

[5]

Bridgman P. W.. Linear Compressions to 30 000 kg/cm2, Including Relatively Incompressible Substances. Proceedings of the American Academy of Arts and Sciences, 1949, 77(6): 189-234.

[6]

Chattopadhyay T., von Schnering H. G.. High Pressure X-Ray Diffraction Study on P-FeS2, M-FeS2 and MnS2 to 340 kbar: A Possible High Spin-Low Spin Transition in MnS2. Journal of Physics and Chemistry of Solids, 1985, 46(1): 113-116.

[7]

Chrystall R. S. B.. Thermal Expansion of Iron Pyrites. Transactions of the Faraday Society, 1965, 61 512P 1811

[8]

Dreibus G., Palme H.. Cosmochemical Constraints on the Sulfur Content in the Earth’s Core. Geochimica et Cosmochimica Acta, 1996, 60(7): 1125-1130.

[9]

Drickamer H. G., Lynch R. W., Clendenen R. L., . X-Ray Diffraction Studies of the Lattice Parameters of Solids under very High Pressure. Solid State Physics, 1967, 19: 135-228.

[10]

Dziewonski A. M., Anderson D. L.. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.

[11]

Fujii T., Yoshida A., Tanaka K., . High Pressure Compressibilities of Pyrite and Cattierite. Mineralogical Journal, 1986, 13(4): 202-211.

[12]

Hofmeister A. M., Mao H. K.. Pressure Derivatives of Shear and Bulk Moduli from the Thermal Gruneisen Parameter and Volume-Pressure Data. Geochimica et Cos mochimica Acta, 2003, 67(6): 1207-1227.

[13]

Jeanloz R.. The Nature of the Earth’s Core. Annual Review of Earth and Planetary Sciences, 1990, 18: 357-386.

[14]

Jephcoat A., Olson P.. Is the Inner Core of the Earth Pure Iron. Nature, 1987, 325(6102): 332-335.

[15]

Kleppe A. P.. K., Jephcoat A. P.. High-Pressure Raman Spectroscopic Studies of FeS2 Pyrite. Mineralogical Magazine, 2004, 68(3): 433-441.

[16]

Le Page Y., Rodgers J. R.. Ab Initio Elasticity of FeS2 Pyrite from 0 to 135 GPa. Physics and Chemistry of Minerals, 2005, 32(8–9): 564-567.

[17]

Li B. S., Chen K., Kung J., . Sound Velocity Measurement Using Transfer Function Method. Journal of Physics—Condensed Matter, 2002, 14(44): 11337-11342.

[18]

Li B. S., Kung J., Liebermann R. C.. Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-anvil Apparatus. Physics of the Earth and Planetary Interiors, 2004, 143–144: 559-574.

[19]

Li J., Agee C. B.. Element Partitioning Constraints on the Light Element Composition of the Earth’s Core. Geophysical Research Letters, 2001, 28(1): 81-84.

[20]

Li J., Fei Y., Mao H. K., . Sulfur in the Earth’s Inner Core. Earth and Planetary Science Letters, 2001, 193(3–4): 509-514.

[21]

Mao H. K., Shu J. F., Shen G. Y., . Elasticity and Rheology of Iron above 220 GPa and the Nature of the Earth’s Inner Core. Nature, 1998, 396(6713): 741-743.

[22]

McDonough W. F., Sun S. S.. The Composition of the Earth. Chemical Geology, 1995, 120(3–4): 223-253.

[23]

Merkel S., Jephcoat A. P., Shu J., . Equation of State, Elasticity, and Shear Strength of Pyrite under High Pressure. Physics and Chemistry of Minerals, 2002, 29(1): 1-9.

[24]

Oldham R. D.. The Constitution of the Interior of the Earth, as Revealed by Earthquakes. Quarterly Journal of the Geological Society, 1906, 62(1–4): 456-475.

[25]

Prasad S. C., Wooster W. A.. The Elasticity of Iron Pyrites, FeS2. Acta Crystallographica, 1956, 9(2): 169-173.

[26]

Robie R. A., Hemingway B. S., Fisher J. R.. Thermodynamic Properties of Minerals ad Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures. United States Geological Survey Bulletin, 1979, 1452: 298-310.

[27]

Simmons G., Birch F.. Elastic Constants of Pyrite. Journal of Applied Physics, 1963, 34(9): 2736-2738.

[28]

Sithole H. M., Ngoepe P. E., Wright K.. Atomistic Simulation of the Structure and Elastic Properties of Pyrite (FeS2) as a Function of Pressure. Physics and Chemistry of Minerals, 2003, 30(10): 615-619.

[29]

Skinner B. J.. Clark S. P. J.. Thermal Expansion. Handbook of Physical Constants, 1966, Boulder, CO.: Geological Society of America 75 95

[30]

Smith F. G.. Variation in the Properties of Pyrite. American Mineralogist, 1942, 27(1): 1-19.

[31]

Whitaker M. L., Liu W., Liu Q., . Combined In Situ Synchrotron X-Ray Diffraction and Ultrasonic Interferometry Study of Epsilon-FeSi at High Pressure. High Pressure Research, 2008, 28(3): 385-395.

[32]

Whitaker M. L., Liu W., Liu Q., . Thermoelasticity of Epsilon-FeSi to 8 GPa and 1 273 K. American Mineralogist, 2009, 94(7): 1039-1044.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/