Dislocation creep accommodated by grain boundary sliding in dunite

Zhongyan Wang , Yonghong Zhao , David L. Kohlstedt

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 541 -554.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 541 -554. DOI: 10.1007/s12583-010-0113-1
Article

Dislocation creep accommodated by grain boundary sliding in dunite

Author information +
History +
PDF

Abstract

To investigate the role of grain boundary sliding during dislocation creep of dunite, a series of deformation experiments were carried out under anhydrous conditions on fine-grained (∼15 μm) samples synthesized from powdered San Carlos olivine and powdered San Carlos olivine+1.5 vol.% MORB. Triaxial compressive creep tests were conducted at a temperature of 1 473 K and confining pressures of 200 and 400 MPa using a high-resolution, gas-medium deformation apparatus. Each sample was deformed at several levels of differential stress between 100 and 250 MPa to yield strain rates in the range of 10−6 to 10−4 s−1. Under these conditions, the dominant creep mechanism involves the motion of dislocations, largely on the easy slip system (010)[100], accommodated by grain boundary sliding (gbs). This grain size-sensitive creep regime is characterized by a stress exponent of n=3.4±0.2 and a grain size exponent of p=2.0±0.2. The activation volume for this gbs-accommodated dislocation creep regime is V*=(26±3)×10−6 m2·mol−1. Comparison of our flow law for gbs-accommodated dislocation creep with those for diffusion creep and for dislocation creep reveals that the present flow law is important for the flow of mantle rocks with grain sizes of <100 μm at differential stresses >20 MPa. Hence, gbs-accommodated dislocation creep is likely to be an important deformation mechanism in deep-rooted, highly localized shear zones in the lithospheric upper mantle.

Keywords

grain boundary sliding / creep / olivine / flow law

Cite this article

Download citation ▾
Zhongyan Wang, Yonghong Zhao, David L. Kohlstedt. Dislocation creep accommodated by grain boundary sliding in dunite. Journal of Earth Science, 2010, 21(5): 541-554 DOI:10.1007/s12583-010-0113-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrmann J. H.. Crystal Plasticity and Superplasticity in Quartzite: A Natural Example. Tectonophys., 1985, 115(1–2): 101-129.

[2]

Boullier A. M., Gueguen Y.. SP-Mylonites: Origin of Some Mylonites by Superplastic Flow. Contrib. Mineral. Petrol., 1975, 50: 93-104.

[3]

Castelnau, O., Blackman, D. K., Lebensohn, R. A., et al., 2008. Micromechanical Modeling of the Viscoplastic Behavior of Olivine. J. Geophys. Res., 113(B9), doi:10.1029/2007JB005444

[4]

Chopra P. N., Paterson M. S.. The Experimental Deformation of Dunite. Tectonophys., 1981, 78(1–4): 453-473.

[5]

Chopra P. N., Paterson M. S.. The Role of Water in the Deformation of Dunite. J. Geophys. Res., 1984, 89(B9): 7861-7876.

[6]

Drury M. R.. Dynamic Recrystallization and Strain Softening of Olivine Aggregates in the Laboratory and the Lithosphere. Geo. Soc. Spec. Publ., 2005, 243: 143-158.

[7]

Etheridge M. A., Wilkie J. C.. Grain Size Reduction, Grain Boundary Sliding and the Flow Strength of Mylonites. Tectonophys., 1979, 58(1–2): 159-178.

[8]

Faul U. H., Scott D.. Grain Growth in Partially Molten Olivine Aggregates. Contrib. Mineral. Petrol., 2006, 151(1): 101-111.

[9]

Fliervoet T. F., White S. H., Drury M. R.. Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist- and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia. J. Struct. Geol., 1997, 19(12): 1495-1520.

[10]

Gifkins R. C.. Optical Microscopy of Metals, 1970, New York: Elsevier Sci.

[11]

Gifkins R. C.. Grain-Boundary Sliding and Its Accommodation during Creep and Superplasticity. Met. Trans., 1976, 7A: 1225-1232.

[12]

Gilotti, J. A., Hull, J. M., 1990. Phenomenological Superplasticity in Rocks. In: Knipe, R. J., Rutter, E. H., eds., Deformation Mechanisms, Rheology and Tectonics. Geo. Soc. Spec. Publ., 54: 229–240

[13]

Goldsby D. L.. Knight P.. Superplastic Flow of Ice Relevant to Glacier and Ice-Sheet Mechanics. Glacier Science and Environmental Change, 2006, Oxford: Blackwell Publishing 308 314

[14]

Goldsby D. L., Kohlstedt D. L.. Superplastic Deformation of Ice: Experimental Observations. J. Geophys. Res., 2001, 106(B6): 11017-11030.

[15]

Green H. W., Borch R. S.. The Pressure Dependence of Creep. Acta Metal., 1987, 35(6): 1301-1305.

[16]

Hirth G., Kohlstedt D. L.. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle 2: Deformation in the Dislocation Creep Regime. J. Geophys. Res., 1995, 100(B8): 15441-15449.

[17]

Hirth G., Kohlstedt D. L.. Water in the Oceanic Upper Mantle: Implications for Rheology, Melt Extraction and Evolution of the Lithosphere. Earth and Planetary Science Letters, 1996, 144(1–2): 93-108.

[18]

Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory. Geophysical Monograph, 138: 83–105

[19]

Hustoft J. W., Kohlstedt D. L.. Metal-Silicate Segregation in Deforming Dunitic Rocks. Geochem. Geophys. Geosyst., 2006, 7 Q02001

[20]

Jin D. G., Karato S. I., Obata M.. Mechanisms of Shear Localization in the Continental Lithosphere: Inference from the Deformation Microstructures of Peridotites from the Ivrea Zone, Northwestern Italy. J. Struct. Geol., 1998, 20(2–3): 195-209.

[21]

Karato S. I.. Scanning Electron Microscope Observation of Dislocations in Olivine. Phys. Chem. Mineral., 1987, 14(3): 245-248.

[22]

Karato S. I.. Grain Growth Kinetics in Olivine Aggregates. Tectonophys., 1989, 168(4): 255-273.

[23]

Karato S. I., Jung H.. Effects of Pressure on High-Temperature Dislocation Creep of Olivine. Phil. Mag., 2003, 83(3): 401-414.

[24]

Karato S. I., Paterson M. S., Fitz-Gerald J. D.. Rheology of Synthetic Olivine Aggregates: Influence of Grain Size and Water. J. Geophys. Res., 1986, 91(B8): 8151-8176.

[25]

Karato S. I., Rubie D. C.. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res., 1997, 102(B9): 20111-20122.

[26]

Kohlstedt D. L., Goetze C., Durham W. B., . New Technique for Decorating Dislocations in Olivine. Science, 1976, 191(4231): 1045-1046.

[27]

Langdon T. G.. Grain Boundary Sliding as a Deformation Mechanism during Creep. Phil. Mag., 1970, 22: 689-700.

[28]

Langdon T. G.. A United Approach to Grain Boundary Sliding in Creep and Superplasticity. Acta Metall. Mater., 1994, 42(7): 2437-2443.

[29]

Marchant D. D., Gordon R. S.. Grain Size Distribution and Grain Growth in MgO and MgO-Fe2O3 Solid Solutions. J. Am. Ceram. Soc., 1971, 55: 19-24.

[30]

Mei S. H., Kohlstedt D. L.. Influence of Water on Plastic Deformation of Olivine Aggregates, 1, Diffusion Creep Regime. J. Geophys. Res., 2000, 105(B9): 21457-21469.

[31]

Mei S. H., Kohlstedt D. L.. Influence of Water on Plastic Deformation of Olivine Aggregates, 2, Dislocation Creep Regime. J. Geophys. Res., 2000, 105(B9): 21471-21481.

[32]

Mukherjee A. K.. The Rate Controlling Deformation Mechanism in Superplasticity. Mater. Sci. Eng., 1971, 8: 83-89.

[33]

Paterson, M. S., 1990. Rock Deformation Experimentation. In: Duba, A. G., Durham, W. B., Handin, J. W., et al., eds., The Brittle-Ductile Transition in Rocks. Geophysical Monograph, 56: 187–194

[34]

Precigout J., Gueydan F., Gapais D., . Strain Localisation in the Subcontinental Mantle—A Ductile Alternative to the Brittle Mantle. Tectonophys., 2007, 445(3–4): 318-336.

[35]

Raj R., Ashby M. F.. On Grain Boundary Sliding and Diffusional Creep. Trans. Met. Soc. AI.M.E., 1971, 2: 1113-1127.

[36]

Rutter E. H., Casey M., Burlini L.. Preferred Crystallographic Orientation Development during the Plastic and Superplastic Flow of Calcite Rocks. J. Struct. Geol., 1994, 16(10): 1431-1446.

[37]

Schmid S. M., Boland J. N., Paterson M. S.. Superplastic Flow in Fine-Grained Limestone. Tectonophys., 1977, 43(3—4): 257-291.

[38]

Schmid S. M., Panozzo R., Bauer S.. Simple Shear Experiments on Calcite Rocks: Rheology and Microfabric. J. Struct. Geol., 1987, 9(5–6): 747-778.

[39]

van der Wal D., Chopra P., Drury M., . Relationships between Dynamically Recrystallized Grain Size and Deformation Conditions in Experimentally Deformed Olivine Rocks. Geophys. Res. Lett., 1993, 20(14): 1479-1482.

[40]

von Mises R.. Mechanik der Plastischen Formänderung von Kristallen. Z. Angew. Math. Mech., 1928, 8: 161-185.

[41]

Warren J. M., Hirth G.. Grain Size Sensitive Deformation Mechanisms in Naturally Deformed Peridotites. Earth and Planetary Science Letters, 2006, 248(1–2): 438-450.

[42]

Wu T., Kohlstedt D. L.. Rutherford Backscattering Spectroscopy Study of Kinetics of Oxidation of (Mg,Fe)2SiO4. J. Am. Ceram. Soc., 1988, 71(7): 540-545.

[43]

Zeuch D. H.. Application of a Model for Grain Boundary Sliding to High Temperature Flow of Carrara Marble. Mechanics of Materials, 1984, 3: 111-117.

[44]

Zimmerman M. E., Kohlstedt D. L.. Rheological Properties of Partially Molten Lherzolite. J. Petrol., 2004, 45(2): 275-298.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/