Dislocation creep accommodated by grain boundary sliding in dunite
Zhongyan Wang , Yonghong Zhao , David L. Kohlstedt
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 541 -554.
Dislocation creep accommodated by grain boundary sliding in dunite
To investigate the role of grain boundary sliding during dislocation creep of dunite, a series of deformation experiments were carried out under anhydrous conditions on fine-grained (∼15 μm) samples synthesized from powdered San Carlos olivine and powdered San Carlos olivine+1.5 vol.% MORB. Triaxial compressive creep tests were conducted at a temperature of 1 473 K and confining pressures of 200 and 400 MPa using a high-resolution, gas-medium deformation apparatus. Each sample was deformed at several levels of differential stress between 100 and 250 MPa to yield strain rates in the range of 10−6 to 10−4 s−1. Under these conditions, the dominant creep mechanism involves the motion of dislocations, largely on the easy slip system (010)[100], accommodated by grain boundary sliding (gbs). This grain size-sensitive creep regime is characterized by a stress exponent of n=3.4±0.2 and a grain size exponent of p=2.0±0.2. The activation volume for this gbs-accommodated dislocation creep regime is V*=(26±3)×10−6 m2·mol−1. Comparison of our flow law for gbs-accommodated dislocation creep with those for diffusion creep and for dislocation creep reveals that the present flow law is important for the flow of mantle rocks with grain sizes of <100 μm at differential stresses >20 MPa. Hence, gbs-accommodated dislocation creep is likely to be an important deformation mechanism in deep-rooted, highly localized shear zones in the lithospheric upper mantle.
grain boundary sliding / creep / olivine / flow law
| [1] |
|
| [2] |
|
| [3] |
Castelnau, O., Blackman, D. K., Lebensohn, R. A., et al., 2008. Micromechanical Modeling of the Viscoplastic Behavior of Olivine. J. Geophys. Res., 113(B9), doi:10.1029/2007JB005444 |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Gilotti, J. A., Hull, J. M., 1990. Phenomenological Superplasticity in Rocks. In: Knipe, R. J., Rutter, E. H., eds., Deformation Mechanisms, Rheology and Tectonics. Geo. Soc. Spec. Publ., 54: 229–240 |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory. Geophysical Monograph, 138: 83–105 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
Paterson, M. S., 1990. Rock Deformation Experimentation. In: Duba, A. G., Durham, W. B., Handin, J. W., et al., eds., The Brittle-Ductile Transition in Rocks. Geophysical Monograph, 56: 187–194 |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
/
| 〈 |
|
〉 |