Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K

Yoshio Kono , Steeve Gréaux , Yuji Higo , Hiroaki Ohfuji , Tetsuo Irifune

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 782 -791.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 782 -791. DOI: 10.1007/s12583-010-0112-2
Article

Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K

Author information +
History +
PDF

Abstract

Simultaneous ultrasonic elastic wave velocity and in situ synchrotron X-ray measurements on grossular garnet were carried out up to 17 GPa and 1 650 K. P- and S-wave velocities and bulk and shear modulus showed linear pressure and temperature dependence. These data yielded a pressure derivative of the bulk modulus of 4.42(7) and a shear modulus of 1.27(3), which are in good agreement with those of garnets with variable chemical compositions. Temperature dependence of the bulk modulus of grossular (−1.36×10−2 GPa/K) is also similar to that of other garnets, while the temperature dependence of the shear modulus of grossular (−1.11×10−2 GPa/K) is higher than those of magnesium end-member garnets and pyrolitic garnet.

Keywords

elastic property / grossular / garnet / high pressure / high temperature

Cite this article

Download citation ▾
Yoshio Kono, Steeve Gréaux, Yuji Higo, Hiroaki Ohfuji, Tetsuo Irifune. Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1 650 K. Journal of Earth Science, 2010, 21(5): 782-791 DOI:10.1007/s12583-010-0112-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bass J. D.. Elasticity of Grossular and Spessartite Garnets by Brillouin Spectroscopy. J. Geophys. Res., 1989, 94(B6): 7621-7628.

[2]

Birch A. F.. Elasticity and Constitution of the Earth’s Interior. J. Geophys. Res., 1952, 57(2): 227-286.

[3]

Conrad P. G., Zha C. S., Mao H. K., . The High-Pressure Single-Crystal Elasticity of Pyrope, Grossular, and Andradite. Am. Min., 1999, 84: 374-383.

[4]

Gwanmesia G. D., Zhang J. Z., Darling K., . Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1 000 °C. Phys. Earth Planet. Inter., 2006, 155(3–4): 179-190.

[5]

Higo Y., Inoue T., Li B. S., . The Effect of Iron on the Elastic Properties of Ringwoodite at High Pressure. Phys. Earth Planet. Inter., 2006, 159(3–4): 276-285.

[6]

Higo Y., Kono Y., Inoue T., . A System for Measuring Elastic Wave Velocity under High Pressure and High Temperature Using a Combination of Ultrasonic Measurement and the Multi-anvil Apparatus at SPring-8. J. Synchrotron Rad., 2009, 16: 762-768.

[7]

Irifune T., Higo Y., Inoue T., . Sound Velocities of Majorite Garnet and the Composition of the Mantle Transition Region. Nature, 2008, 451(7180): 814-817.

[8]

Isaak D., Anderson O. L., Oda H.. High-Temperature Thermal Expansion and Elasticity of Calcium-Rich Garnets. Phys. Chem. Minerals, 1992, 19(2): 106-120.

[9]

Kono Y., Higo Y., Ohfuji H., . Elastic Wave Velocities of Garnetite with a MORB Composition up to 14 GPa. Geophys. Res. Lett., 2007, 34 14 L14308

[10]

Li B. S., Hung J., Liebermann R. C.. Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-anvil Apparatus. Phys. Earth Planet. Inter., 2004, 143–144: 559-574.

[11]

Nobes R. H., Akhmatskaya E. V., Milman V., . Structure and Properties of Aluminosilicate Garnets and Katotite: An Ab Initio Study. Computational Materials Science, 2000, 17(2–4): 141-145.

[12]

O’Neill B., Bass J. D., Rossman G. R., . Elastic Properties of Pyrope. Phys. Chem. Minerals, 1991, 17(7): 617-621.

[13]

O’Neill B., Bass J. D., Smyth J. R., . Elasticity of a Grossular-Pyrope-Almandine Garnet. J. Geophys. Res., 1989, 94(B12): 17819-17824.

[14]

Olijnyk H., Paris E., Geiger C. A., . Compressional Study of Katoite [Ca3Al2(O4H4)3] and Grossular Garnet. J. Geophys. Res., 1991, 96(B9): 14313-14318.

[15]

Pavese A., Diella V., Pischedda V., . Pressure-Volume-Temperature Equation of State of Andradite and Grossular, by High-Pressure and -Temperature Powder Diffraction. Phys. Chem. Minerals, 2001, 28(4): 242-248.

[16]

Rodehorst U., Geiger C. A., Armbruster T., . The Crystal Structures of Grossular and Spessartine between 100 and 600 K and the Crystal Chemistry of Grossular-Spessartine Solid Solutions. Am. Min., 2002, 87: 542-549.

[17]

Sinelnikov Y. D., Chen G. L., Liebermann R. C.. Dual Mode Ultrasonic Interferometry in Multi-anvil High Pressure Apparatus Using Single-Crystal Olivine as the Pressure Standard. High Press. Res., 2004, 24(1): 183-191.

[18]

Sinogeikin S. V., Bass J. D.. Single-Crystal Elasticity of Pyrope and MgO to 20 GPa by Brillouin Scattering in the Diamond Cell. Phys. Earth Planet. Inter., 2000, 120(1–2): 43-62.

[19]

Sinogeikin S. V., Bass J. D.. Elasticity of Majorite and a Majorite-Pyrope Solid Solution to High Pressure: Implications for the Transition Zone. Geophys. Res. Lett., 2002, 29 2 1017

[20]

Stixrude L., Lithgow-Bertelloni C.. Thermodynamics of Mantle Minerals—I, Physical Properties. Geophys. J. Int., 2005, 162(2): 610-632.

[21]

Tsuchiya T.. First-Principles Prediction of the P-V-T Equation of State of Gold and the 660-km Discontinuity in Earth’s Mantle. J. Geophys. Res., 2003, 108 B10 2462

[22]

Wang Y. B., Weidner D. J., Zhang J. Z., . Thermal Equation of State of Garnets along the Pyrope-Majorite Join. Phys. Earth Planet. Inter., 1998, 105(1–2): 59-72.

[23]

Weaver J. S., Takahashi T., Bass J. D.. Isothermal Compression of Grossular Garnets to 250 kbar and the Effect of Calcium on the Bulk Modulus. J. Geophys. Res., 1976, 81(14): 2475-2482.

[24]

Zhang L., Ashbahs H., Kutoglu A., . Single-Crystal Hydrostatic Compression of Synthetic Pyrope, Almandine, Spessartine, Grossular and Andradite Garnets at High Pressures. Phys. Chem. Minerals, 1999, 27(1): 52-58.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/