Technical development of simple shear deformation experiments using a deformation-DIA apparatus

Tomohiro Ohuchi , Takaaki Kawazoe , Norimasa Nishiyama , Nishihara Yu , Tetsuo Irifune

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 523 -531.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (5) : 523 -531. DOI: 10.1007/s12583-010-0110-4
Article

Technical development of simple shear deformation experiments using a deformation-DIA apparatus

Author information +
History +
PDF

Abstract

Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of six second-stage tungsten carbide anvils (with a truncated edge length of 5 mm) and the anvil guide. Deformation of samples was barely observed during the compression process, showing that the shear strain of the deformed samples can be measured by the rotation of a strain marker. Simple shear deformation experiments on anhydrous and hydrous olivine aggregates were conducted under upper mantle conditions (pressures of 5.2–7.6 GPa and temperatures of 1 473–1 573 K), and sample deformation with a shear strain of γ=0.8−1.2 was successfully achieved at a shear strain rate of 4.0×10−5−7.5×10−5 s−1. The present study extended the pressure range of simple shear deformation experiments in the deformation-DIA apparatus from 3 GPa in an early study to 7.6 GPa at high temperatures.

Keywords

simple shear / deformation / deformation-DIA / MA 6-6 / upper mantle

Cite this article

Download citation ▾
Tomohiro Ohuchi, Takaaki Kawazoe, Norimasa Nishiyama, Nishihara Yu, Tetsuo Irifune. Technical development of simple shear deformation experiments using a deformation-DIA apparatus. Journal of Earth Science, 2010, 21(5): 523-531 DOI:10.1007/s12583-010-0110-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ayers J. C., Brenan J. B., Watson E. B., . A New Capsule Technique for Hydrothermal Experiments Using the Piston-Cylinder Apparatus. Am. Mineral., 1992, 77: 1080-1086.

[2]

Bose K., Ganguly J.. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500–1 200 °C and Retrieved Thermochemical Properties. Am. Mineral., 1995, 80(3–4): 231-238.

[3]

Couvy H., Frost D. J., Heidelbach F., . Shear Deformation Experiments of Forsterite at 11 GPa-1 400 °c in the Multianvil Apparatus. Eur. J. Mineral., 2004, 16: 877-889.

[4]

Frost D. J.. The Structure and Sharpness of (Mg,Fe)2SiO4 Phase Transformations in the Transition Zone. Earth Planet. Sci. Lett., 2003, 216(3): 313-328.

[5]

Jung H., Karato S. I.. Water-Induced Fabric Transitions in Olivine. Science, 2001, 293(5534): 1460-1462.

[6]

Jung H., Karato S. I.. Effects of Water on Dynamically Recrystallized Grain-Size of Olivine. J. Struct. Geol., 2001, 23(9): 1337-1344.

[7]

Jung H., Katayama I., Jiang Z., . Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophys., 2006, 421(1–2): 1-22.

[8]

Karato S. I., Rubie D. C.. Toward an Experimental Study of Deep Mantle Rheology: A New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. J. Geophys. Res., 1997, 102(B9): 20111-20122.

[9]

Karato S. I., Jung H.. Effects of Pressure on High-Temperature Dislocation Creep in Olivine. Philos. Mag., 2003, 83(3): 401-414.

[10]

Karato S. I., Jung H., Katayama I., . Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci., 2008, 36: 59-95.

[11]

Kawazoe, T., Nishiyama, N., Nishihara, Y., et al., 2010. Deformation Experiment at P-T Conditions of the Mantle Transition Zone Using D-DIA Apparatus. Phys. Earth Planet. Inter., doi:10.1016/j.pepi.2010.07.004

[12]

Kohlstedt D. L., Goetze C., Durham W. B.. The Physics and Chemistry of Minerals and Rocks, 1977, New York: Wiley 35 49

[13]

Kohlstedt D. L., Keppler H., Rubie D. C.. Solubility of Water in the α, β, γ Phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol., 1996, 123(4): 345-357.

[14]

Li L., Weidner D., Raterron P., . Deformation of Olivine at Mantle Pressure Using the D-DIA. Eur. J. Mineral., 2006, 18: 7-19.

[15]

Litasov K. D., Shatskiy A. F., Pal-Yanov Y. N., . Hydrogen Incorporation into Forsterite in Mg2SiO4-K2Mg(CO3)2-H2O and Mg2SiO4-H2O-C at 7.5–14.0 GPa. Russ. Geol. Geophys., 2009, 50(12): 1129-1138.

[16]

Mackwell S. J., Kohlstedt D. L., Paterson M. S.. The Role of Water in the Deformation of Olivine Single Crystals. J. Geophys. Res., 1985, 90: 11319-11333.

[17]

Nishiyama N., Wang Y. B., Sanehira T., . Development of the Multi-Anvil Assembly 6-6 for DIA and D-DIA Type High-Pressure Apparatuses. High Pressure Res., 2008, 28(3): 307-314.

[18]

Ohuchi, T., Karato, S., Fujino, K., 2010. Strength of Single Crystal of Orthopyroxene under Lithospheric Conditions. Contrib. Mineral. Petrol., doi:10.1007/s00410-010-0574-3

[19]

Paterson M. S.. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bull. Mineral., 1982, 105(1): 20-29.

[20]

Raterron P., Chen J. H., Li L., . Pressure-Induced Slip-System Transition in Forsterite: Single-Crystal Rheological Properties at Mantle Pressure and Temperature. Am. Mineral., 2007, 92: 1436-1445.

[21]

Raterron P., Amiguet E., Chen J. H., . Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Phys. Earth Planet. Inter., 2009, 172(1–2): 74-83.

[22]

Walte N., Heidelbach F., Miyajima N., . Texture Development and TEM Analysis of Deformed CaIrO3: Implications for the D” Layer at the Core-Mantle Boundary. Geophys. Res. Lett., 2007, 34 8 L08306

[23]

Wang Y. B., Durham W. B., Getting I. C., . The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Rev. Sci. Instrum., 2003, 74(6): 3002-3011.

[24]

Yagi T., Akaogi M., Shimomura O., . In Situ Observation of the Olivine-Spinel Phase Transformation in Fe2SiO4 Using Synchrotron Radiation. J. Geophys. Res., 1987, 92(B7): 6207-6213.

[25]

Zhang J., Li B., Utsumi W., . In Situ X-Ray Observations of the Coesite-Stishovite Transition: Reversed Phase Boundary and Kinetics. Phys. Chem. Min., 1996, 23(1): 1-10.

[26]

Zhang S. Q., Karato S. I.. Lattice Preferred Orientation of Olivine Aggregates in Simple Shear. Nature, 1995, 375(6534): 774-777.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/