Variation in solvent-extractable lipids and n-alkane compound-specific carbon isotopic compositions with depth in a southern China karst area soil

Jingwei Cui , Junhua Huang , Philip A. Meyers , Xianyu Huang , Jingjing Li , Wengui Liu

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (4) : 382 -391.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (4) : 382 -391. DOI: 10.1007/s12583-010-0101-5
Article

Variation in solvent-extractable lipids and n-alkane compound-specific carbon isotopic compositions with depth in a southern China karst area soil

Author information +
History +
PDF

Abstract

Because literatures about the lipid compositions of modern soils in karst areas are scarce, we have studied the soil horizons overlying the Heshang (和尚) Cave that has provided paleoclimate records from speleothem lipid contents. Our analysis reveals a series of n-alkanes, free fatty acids, n-alkanols and n-alkan-2-ones distribution and relative abundance changing with the depth, and in which the ratios of the lower molecular weight to higher molecular weight n-alkanes, free fatty acids, n-alkanols and n-alkan-2-ones have a peak at a subsurface depth of 5 to 10 cm. An accompanying peak in 17β(H), 21β(H)-hop-22(29)-ene (diploptene) and a shift to less negative n-alkane carbon isotopic values also identify this layer in the karst soil. This pattern indicates the existence of a subsurface soil layer in which the microorganisms that produce these compounds are especially abundant. The carbon isotopic values of individual plant wax n-alkanes are about 3‰ greater at the base of the 30- to 40-cm soil profile than in the surface layer, probably as a result of selective microbial degradation of n-alkanes from different primary sources. The lipids and carbon isotopic values of individual plant wax n-alkanes study of the overlying soil show a strong microbial activity in this karst soil and help in interpreting the lipid compositions and specific carbon isotopic value of n-alkanes of the stalagmites of the Heshang Cave for paleoenvironmental reconstructions.

Keywords

lipid biomarker / modern soil / karst area / compound-specific carbon isotopic value / n-alkan-2-one

Cite this article

Download citation ▾
Jingwei Cui, Junhua Huang, Philip A. Meyers, Xianyu Huang, Jingjing Li, Wengui Liu. Variation in solvent-extractable lipids and n-alkane compound-specific carbon isotopic compositions with depth in a southern China karst area soil. Journal of Earth Science, 2010, 21(4): 382-391 DOI:10.1007/s12583-010-0101-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baas M., Pancost R., van Geel B., . A Comparative Study of Lipids in Sphagnum Species. Organic Geochemistry, 2000, 31(6): 535-541.

[2]

Bai Y., Fang X. M., Wang Y. L., . Distribution of Aliphatic Ketones in Chinese Soils: Potential Environmental Implications. Organic Geochemistry, 2006, 37(7): 860-869.

[3]

Bull I. D., van Bergen P. F., Nott C. J., . Organic Geochemical Studies of Soils from the Rothamsted Classical Experiments: V, The Fate of Lipids in Different Long-Term Experiments. Organic Geochemistry, 2000, 31(5): 389-408.

[4]

Cayet C., Lichtfouse E.. δ 13C of Plant-Derived n-Alkanes in Soil Particle-Size Fractions. Organic Geochemistry, 2001, 32(2): 253-258.

[5]

Chikaraishi Y., Naraoka H.. Carbon and Hydrogen Isotope Variation of Plant Biomarkers in a Plant-Soil System. Chemical Geology, 2006, 231(3): 190-202.

[6]

Chikaraishi Y., Naraoka H.. δ13C and δD Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 2007, 38(2): 198-215.

[7]

Cui J. W., Huang J. H., Pu Y., . Comparison of Lipid Compositions between Plant Leaves and Overlying Soil in Heshang Cave, Qingjiang, Hubei Province and Its Significance. Quaternary Sciences, 2008, 28(1): 35-42.

[8]

Deines P.. The Isotopic Composition of Reduced Organic Carbon. Handbook of Environmental Isotope Geochemistry: Volume 1, The Terrestrial Environment, 1980, Amsterdam: A. Elsevier 329 406

[9]

Fierer N., Schimel J. P., Holden P. A.. Variations in Microbial Community Composition through Two Soil Profiles. Soil Biology and Biochemistry, 2003, 35(1): 167-176.

[10]

Grice K.. Distributions and Stable Carbon Isotopic Compositions of Individual Biological Markers from the Permian Kupferschiefer (Lower Rhine Basin, N.W. Germany), 1995, Bristol: University of Bristol

[11]

Hernandez M. E., Mead R., Peralba M. C., . Origin and Transport of n-Alkane-2-Ones in a Subtropical Estuary: Potential Biomarkers for Seagrass-Derived Organic Matter. Organic Geochemistry, 2001, 32(1): 21-32.

[12]

Howard P. J. A., Howard D. M., Lowe L. E.. Effects of Tree Species and Soil Physico-chemical Conditions on the Nature of Soil Organic Matter. Soil Biology and Biochemistry, 1998, 30(3): 285-297.

[13]

Hu C. Y., Henderson G. M., Huang J. H., . Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 2008, 266(3–4): 221-232.

[14]

Huang X. Y., Cui J. W., Pu Y., . Identifying “Free” and “Bound” Lipid Fractions in Stalagmite Samples: An Example from Heshang Cave, Southern China. Applied Geochemistry, 2008, 23(9): 2589-2595.

[15]

Huang Y. S., Bol R., Harkness D. D., . Post-Glacial Variations in Distributions, 13C and 14C Contents of Aliphatic Hydrocarbons and Bulk Organic Matter in Three Types of British Acid Upland Soils. Organic Geochemistry, 1996, 24(3): 273-287.

[16]

Huang Y. S., Clemens S. C., Liu W. G., . Large-Scale Hydrological Change Drove the Late Miocene C4 Plant Expansion in the Himalayan Foreland and Arabian Peninsula. Geology, 2007, 35: 531-534.

[17]

Lichtfouse E.. 13C Labelling of Soil n-Hentriacontane (C31) by Maize Cultivation. Tetrahedron Letters, 1995, 36(4): 529-530.

[18]

Lichtfouse E.. Isotope and Biosynthetic Evidence for the Origin of Long-Chain Aliphatic Lipids in Soils. Naturwissenschaften, 1998, 85(2): 76-77.

[19]

Lockeart M. J., van Bergen P. F., Evershed R. P.. Variations in the Stable Carbon Isotope Compositions of Individual Lipids from the Leaves of Modern Angiosperms: Implications for the Study of Higher Land Plant-Derived Sedimentary Organic Matters. Organic Geochemistry, 1997, 26(1–2): 137-153.

[20]

Marseille F., Disnar J. R., Guillet B., . n-Alkanes and Free Fatty Acids in Humus and A1 Horizons of Soils under Beech, Spruce and Grass in the Massif-Central (Mont-Lozere), France. European Journal of Soil Science, 1999, 50(3): 433-441.

[21]

Meyers P. A., Ishiwatari R.. Lacustrine Organic Geochemistry: An Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments. Organic Geochemistry, 1993, 20(7): 867-900.

[22]

Muchembled J., Grandmougin-Ferjani A., Sancholle M., . Effect of Age on the Fatty Acid Content of Blumeria Graminis Conidia. Biochemical Society Transactions, 2000, 28: 875-877.

[23]

Naafs D. F. W., van Bergen P. F., Boogert S. J., . Solvent-Extractable Lipids in an Acid Andic Forest Soil: Variations with the Depth and Season. Soil Biology and Biochemistry, 2004, 36(2): 297-308.

[24]

Nichols J. E., Huang Y. S.. C23–C31 n-Alkan-2-Ones are Biomarkers for the Genus Sphagnum in Freshwater Peatlands. Organic Geochemistry, 2007, 38(11): 1972-1976.

[25]

Prahl F. G., Hayes J. M., Xie T. M.. An Indicator of Terrigenous Organic Carbon in Washington Coastal Sediments. Limnology and Oceanography, 1992, 37(6): 1290-1300.

[26]

Pu Y., Huang J. H., Huang X. Y., . Acyclic Alkanes in the Soil over Heshang Cave, Qingjiang, Hubei Province. Journal of China University of Geosciences, 2006, 17(2): 115-120.

[27]

Řezanka T., Zlatkin I. V., Viden I., . Capillary Gas Chromatography-Mass Spectrometry of Unusual and Very Long-Chain Fatty Acids from Soil Oligotrophic Bacteria. Journal of Chromatography A, 1991, 558(1): 215-221.

[28]

Rieley G., Collie R. J., Jones D. M., . Sources of Sedimentary Lipids Deduced from Stable Carbon-Isotope Analyses of Individual Compounds. Nature, 1991, 352(6334): 425-427.

[29]

Rieley G., Collister J. W., Stern B., . Gas Chromatography/Isotope Ratio Mass Spectrometry of Leaf Wax n-Alkanes from Plants of Differing Carbon Dioxide Metabolisms. Rapid Communications in Mass Spectrometry, 1993, 7(6): 488-491.

[30]

Ries S. K., Wert V., Sweeley C. C., . Triacontanol: A New Naturally Occurring Plant Growth Regulator. Science, 1977, 195(4284): 1339-1341.

[31]

Rogge W. F., Hildemann L. M., Mazurek M. A., . Sources of Fine Organic Aerosol, 1: Charbroilers and Meat Cooking Operations. Environmental Science and Technology, 1991, 25(6): 1112-1125.

[32]

Rommerskirchen F., Plader A., Eglinton G., . Chemotaxonomic Significance of Distribution and Stable Carbon Isotopic Composition of Long-Chain Alkanes and Alkan-1-Ols in C4 Grass Waxes. Organic Geochemistry, 2006, 37(10): 1303-1332.

[33]

Ruess L., Häggblom M. M., García-Zapata E. J., . Fatty Acids of Fungi and Nematodes-Possible Biomarkers in the Soil Food Chain?. Soil Biology and Biochemistry, 2002, 34(6): 745-756.

[34]

Simoneit B. R. T.. Organic Matter in Eolian Dusts over the Atlantic Ocean. Marine Chemistry, 1977, 5(4–6): 443-464.

[35]

Simoneit B. R. T., Mazurek M. A., Brenner S., . Organic Geochemistry of Recent Sediments from Guaymas Basin, Gulf of California. Deep-Sea Research, 1979, 26(8): 879-889.

[36]

Sinninghe Damsté J. S., Rijpstra W. I. C., Schouten S., . The Occurrence of Hopanoids in Planctomycetes: Implications for the Sedimentary Biomarker Record. Organic Geochemistry, 2004, 35(5): 561-566.

[37]

Sun M. Y., Zou L., Dai J. H., . Molecular Carbon Isotopic Fractionation of Algal Lipids during Decomposition in Natural Oxic and Anoxic Seawaters. Organic Geochemistry, 2004, 35(8): 895-908.

[38]

Szafranek B., Maliñski E., Nawrot J., . In Vitro Effects of Cuticular Lipids of Aphids Sitobion avenae, Hyalopterus pruni and Brevicoryne brassicae on Growth and Sporulation of the Paecilomyces fumosoroseus and Beauveria bassiana. Archive for Organic Chemistry, 2001, 3: 81-94.

[39]

Uemura H., Ishiwatari R.. Identification of Unusual 17β(H)-Moret-22(29)-Ene in Lake Sediments. Organic Geochemistry, 1995, 23(7): 675-680.

[40]

Volkman J. K., Farrington J. W., Gagosian R. B., . Lipid Composition of Coastal Marine Sediments from the Peru Upwelling Region. Organic Geochemistry, 1983, 10: 228-240.

[41]

Wiesenberg G. L. B., Schwarzbauer J., Schmidt M. W. I., . Source and Turnover of Organic Matter in Agricultural Soils Derived from n-Alkane/n-Carboxylic Acid Compositions and C-Isotope Signatures. Organic Geochemistry, 2004, 35(11–12): 1371-1393.

[42]

Winkler A., Haumaier L., Zech W.. Insoluble Alkyl Carbon Components in Soils Derive Mainly from Cutin and Suberin. Organic Geochemistry, 2005, 36(4): 519-529.

[43]

Xie S. C., Chen F. H., Wang Z. Y., . The Occurrence of a Grassy Vegetation over the Chinese Loess Plateau since the Last Interglacier: The Molecular Fossil Record. Science in China (Ser. D), 2002, 45(1): 54-62.

[44]

Xie S. C., Huang J. H., Wang H. M., . Distributions of Fatty Acids in a Stalagmite Related to Paleoclimate Change at Qingjiang in Hubei, Southern China. Science in China (Ser. D), 2005, 35(3): 246-251.

[45]

Xie S. C., Yao T. D., Kang S. C., . Climatic and Environmental Implications from Organic Matter in Dasuopu Glacier in Xixiabangma in Qinghai-Tibetan Plateau. Science in China (Ser. D), 1999, 42(4): 383-391.

[46]

Xie S. C., Yi Y., Huang J. H., . Lipid Distribution in a Subtropical Southern China Stalagmite as a Record of Soil Ecosystem Response to Paleoclimate Change. Quaternary Research, 2003, 60(3): 340-347.

[47]

Xie S. C., Yi Y., Liu Y. Y., . The Pleistocene Vermicular Red Earth in South China Signaling the Global Climatic Change: The Molecular Fossil Record. Science in China (Ser. D), 2003, 46: 1113-1120.

[48]

Zhang Z. H., Zhao M. X., Eglinton G., . Leaf Wax Lipids as Paleovegetational and Paleoenvironmental Proxies for the Chinese Loess Plateau over the Last 170 kyr. Quaternary Science Reviews, 2006, 25(5–6): 575-594.

[49]

Zheng Y. H., Zhou W. J., Meyers P. A., . Lipid Biomarkers in the Zoige-Hongyuan Peat Deposit: Indicators of Holocene Climate Changes in West China. Organic Geochemistry, 2007, 38(11): 1927-1940.

[50]

Zhou W., Xie S., Meyers P. A., . Reconstruction of Late Glacial and Holocene Climate Evolution in Southern China from Geolipids and Pollen in the Dingnan Peat Sequence. Organic Geochemistry, 2005, 36(9): 1272-1284.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/