Modeling the contemporary stress field and deformation pattern of eastern Mediterranean

S. K. Dwivedi, D. Hayashi

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (4) : 365-381.

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (4) : 365-381. DOI: 10.1007/s12583-010-0100-6
Article

Modeling the contemporary stress field and deformation pattern of eastern Mediterranean

Author information +
History +

Abstract

The contemporary stress field in the earth’s crust is important and provides insights into mechanisms that drive plate motions. In this study, elastic plane stress finite element modeling incorporating realistic rock parameters was used to calculate the stress field, displacement field, and deformation of the plate interactions in the eastern Mediterranean. Modeled stress data for the African-Arabian-Anatolian plate interactions with fixed European platform correlate well with observed contemporary stress indicator from the world stress map (WSM) and focal mechanism of earthquakes; while displacement field agrees qualitatively well with GPS vectors and sense of motion indicated by focal mechanisms for large crustal earthquakes (M s>6) and plate motion models. Modeling result shows the direction of maximum horizontal compressive stress (σ Hmax) toward the direction of absolute motion of these plates. Large perturbations in σ Hmax orientations are shown to occur in and around tectonic boundaries between those plates. It is observed that, although the African plate acts mostly as indenter, which transmits the collisional motion from the Arabian plate to the Anatolian plate, in the current situation, the far-field stress, probably from the subduction in Aegean Arc, is needed to satisfy the contemporary stress field in Anatolia.

Keywords

finite element model / maximum horizontal stress / seismicity / crustal deformation / Anatolia / eastern Mediterranean

Cite this article

Download citation ▾
S. K. Dwivedi, D. Hayashi. Modeling the contemporary stress field and deformation pattern of eastern Mediterranean. Journal of Earth Science, 2010, 21(4): 365‒381 https://doi.org/10.1007/s12583-010-0100-6

References

Ambraseys N. N., Jackson J. A.. Faulting Associated with Historical and Recent Earthquakes in the Eastern Mediterranean. Geophysical Journal International, 1998, 133(2): 390-406.
CrossRef Google scholar
Angelier, J., 1979. Néotectonique de l’arc Egéen. Soc. Geol. du Nord, 3
Armijo R., Meyer B., Hubert A., . Westward Propagation of the North Anatolian Fault into the Northern Aegean: Timing and Kinematics. Geology, 1999, 27: 267-270.
CrossRef Google scholar
Arpat E., Saroglu F.. The East Anatolian Fault System: Thoughts on Its Development. Bulletin of the Mineral Research and Exploration Institute of Turkey, 1972, 78: 33-39.
Barka A.. The North Anatolian Fault Zone. Annales Tectonicae, 1992, 6(Suppl.): 164-195.
Barka A. A., Kadinsky-Cade K.. Strike-Slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics, 1988, 7(3): 663-684.
CrossRef Google scholar
Bozkurt E.. Neotectonics of Turkey: A Synthesis. Geodinamica Acta, 2001, 14(1–3): 3-30.
CrossRef Google scholar
Bozkurt E., Kocyigit A.. The Kazova Basin: An Active Negative Flower Structure on the Almus Fault Zone, a Splay Fault System of the North Anatolian Fault Zone, Turkey. Tectonophysics, 1996, 265(3–4): 239-254.
CrossRef Google scholar
Chu D. Z., Gordon R. G.. Current Plate Motions across the Red Sea. Geophysical Journal International, 1998, 135(2): 313-328.
CrossRef Google scholar
Cianetti S., Gasperini P., Boccaletti M., . Reproducing the Velocity and Stress Fields in the Aegean Region. Geophysical Research Letters, 1997, 24(16): 2087-2090.
CrossRef Google scholar
Cianetti S., Gasperini P., Giunchi C., . Numerical Modelling of the Aegean-Anatolian Region: Geodynamical Constraints from Observed Rheological Heterogeneities. Geophysical Journal International, 2001, 146(3): 760-780.
CrossRef Google scholar
Clark, S. P. Jr., 1966. Handbook of Physical Constants. Geological Society of America Memoir 97, New York. 587
Davies R., England P., Parsons B., . Geodetic Strain of Greece in the Interval 1892–1992. Journal of Geophysical Research, 1997, 102(B11): 24571-24588.
CrossRef Google scholar
DeMets C., Gordon R. G., Argus D. F., . Current Plate Motions. Geophysical Journal International, 1990, 101(2): 425-478.
CrossRef Google scholar
DeMets C., Gordon R. G., Argus D. F., . Effect of Recent Revisions to the Geomagnetic Reversal Time Scale on Estimates of Current Plate Motions. Geophysical Research Letters, 1994, 21(20): 2191-2194.
CrossRef Google scholar
Dewey J. F., Hempton M. R., Kidd W. S. F., . Shortening of Continental Lithosphere: The Neotectonics of Eastern Anatolia, a Young Collision Zone. Geological Society Special Publications, 1986, 19: 3-36.
CrossRef Google scholar
Dewey J. F., Pitman W. C., Ryan W. B. F., . Plate Tectonics and the Evolution of the Alpine System. Geological Society of America Bulletin, 1973, 84(12): 3137-3180.
CrossRef Google scholar
Doutsos T., Kokkalas S.. Stress and Deformation Patterns in the Aegean Region. Journal of Structural Geollogy, 2001, 23(2–3): 455-472.
CrossRef Google scholar
Dwivedi S. K., Hayashi D.. Numerical Modeling of the Development of Southeastern Red Sea Continental Margin. Earthquake Science, 2009, 22(3): 239-249.
CrossRef Google scholar
Dwivedi S. K., Hayashi D.. FE Modeling of Contem porary Stress Field in Northeast Africa: Implications for the Kinematics of Suez Rift. Boll. Geofís. Teor. Appl., 2008, 49(Suppl.2): 318-323.
Fischer K. D.. The Influence of Different Rheological Parameters on the Surface Deformation and Stress Field of the Aegean-Anatolian Region. International Journal of Earth Sciences, 2006, 95(2): 239-249.
CrossRef Google scholar
Garfunkel Z., Ben-Avraham Z.. The Structure of the Dead Sea Basin. Tectonophysics, 1996, 266(1–4): 155-176.
CrossRef Google scholar
Gephart J. W., Forsyth D. W.. An Improved Method for Determining the Regional Stress Tensor Using Earthquake, Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research, 1984, 89(B11): 9305-9320.
CrossRef Google scholar
Hayashi D.. Theoretical Basis of FE Simulation Software Package. Bull. Fac. Sci. Univ. Ryukyus, 2008, 85: 81-95.
Heidbach, O., Tingay, M., Barth, A., et al., 2008. The 2008 Release of the World Stress Map (Available Online at www.world-stress-map.org)
Hempton M. R.. Constraints on Arabian Plate Motion and Extensional History of the Red Sea. Tectonics, 1987, 6(6): 687-705.
CrossRef Google scholar
Jackson J.. Active Tectonics of the Aegean Region. Annual Review of Earth and Planetary Sciences, 1994, 22: 239-271.
CrossRef Google scholar
Jackson J., Haines J., Holt W.. The Accommodation of Arabia-Eurasia Plate Convergence in Iran. Journal of Geophysical Research, 1995, 100(B8): 15205-15219.
CrossRef Google scholar
Jackson J., McKenzie D.. Active Tectonics of the Alpine-Himalayan Belt between Western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 1984, 77(1): 185-264.
Joffe S., Garfunkel Z.. Plate Kinematics of the Circum Red Sea: A Reevaluation. Tectonophysics, 1987, 141(1–3): 5-22.
CrossRef Google scholar
Kahle H. G., Cocard M., Peter Y., . GPS-Derived Strain Rate Field within the Boundary Zones of the Eurasian, African, and Arabian Plates. Journal of Geophysical Research, 2000, 105(B10): 23353-23370.
CrossRef Google scholar
Kahle H. G., Muller M. V., Geiger A., . The Strain Field in NW Greece and the Ionian Islands: Results Inferred from GPS Measurements. Tectonophysics, 1995, 249: 41-52.
CrossRef Google scholar
Kempler D., Garfunkel Z.. Structures and Kinematics in the Northeastern Mediterranean: A Study of an Irregular Plate Boundary. Tectonophysics, 1994, 234(1–2): 19-32.
CrossRef Google scholar
Kiratzi A. A.. A Study on the Active Crustal Deformation of the North and East Anatolian Fault Zones. Tectonophysics, 1993, 225(3): 191-203.
CrossRef Google scholar
Kiratzi A. A., Papazachos C. B.. Active Crustal Deformation from the Azores Triple Junction to the Middle East. Tectonophysics, 1995, 243(1–2): 1-24.
CrossRef Google scholar
Kocyigit A.. Susehri Basin: An Active Fault-Wedge Basin on the North Anatolian Fault Zone, Turkey. Tectonophysics, 1989, 167(1): 13-29.
CrossRef Google scholar
Le Pichon X., Angelier J.. The Hellenic Arc and Trench System: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area. Tectonophysics, 1979, 60(1–2): 1-42.
CrossRef Google scholar
Le Pichon X., Chamot-Rooke N., Lallemant S.. Geodetic Determination of the Kinematics of Central Greece with Respect to Europe: Implications for Eastern Mediterranean Tectonics. Journal of Geophysical Research, 1995, 100(B7): 12675-12690.
Le Pichon X., Gaulier J. M.. The Rotation of Arabia and the Levant Fault System. Tectonophysics, 1988, 153(1–4): 271-294.
CrossRef Google scholar
Lundgren P., Giardini D., Russo R. M.. A Geodynamic Framework for Eastern Mediterranean Kinematics. Geophysical Research Letters, 1998, 25(21): 4007-4010.
CrossRef Google scholar
Lyberis N.. Tectonic Evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics, 1988, 153(1–4): 209-220.
CrossRef Google scholar
McClusky S., Balassanian S., Barka A., . Global Positioning System Constraints on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus. Journal of Geophysical Research, 2000, 105(B3): 5695-5719.
McClusky S., Reilinger R., Mahmoud S., . GPS Constraints on Africa (Nubia) and Arabia Plate Motions. Geophysical Journal International, 2003, 155(1): 126-138.
CrossRef Google scholar
McKenzie D. P.. Plate Tectonics of the Mediterranean Region. Nature, 1970, 226(5242): 239-243.
CrossRef Google scholar
McKenzie D. P.. Active Tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 1972, 30(2): 109-185.
McKenzie D. P.. The East Anatolian Fault: A Major Structure in the Eastern Turkey. Earth and Planetary Science Letters, 1976, 29(1): 189-193.
CrossRef Google scholar
Meijer P. T., Wortel M. J. R.. Temporal Variation in the Stress Field of the Aegean Region. Geophysical Research Letters, 1996, 23(5): 439-442.
CrossRef Google scholar
Meijer P. T., Wortel M. J. R.. Present-Day Dynamics of the Aegean Region: A Model Analysis of the Horizontal Pattern of Stress and Deformation. Tectonics, 1997, 16(6): 879-895.
CrossRef Google scholar
Neves S. P., Silva J. M. R., Mariano G.. Oblique Lineations in Orthogneisses and Supracrustal Rocks: Vertical Partitioning of Strain in a Hot Crust, Eastern Borborema Province, NE Brazil. Journal of Structural Geology, 2005, 27(8): 1513-1527.
CrossRef Google scholar
Nyst, M., Thatcher, W., 2004. New Constraints on the Active Tectonic Deformation of the Aegean. Journal of Geophysical Research, 109(B11406), doi:10.1029/2003JB002830
Otsubo M., Hayashi D.. Neotectonics in Southern Ryukyu Arc by Means of Paleostress Analysis. Bull. Fac. Sci. Univ. Ryukyus, 2003, 76: 1-73.
Papazachos C. B.. Seismological GPS Evidence for the Aegean-Anatolia Interaction. Geophysical Research Letters, 1999, 26(17): 2653-2656.
CrossRef Google scholar
Papazachos C. B., Kiratzi A. A.. A Formulation for Reliable Estimation of Active Crustal Deformation and Its Application to Central Greece. Geophysical Journal International, 1992, 111(3): 424-432.
CrossRef Google scholar
Papazachos C. B., Kiratzi A. A.. A Detailed Study of the Active Crustal Deformation in the Aegean and Surrounding Area. Tectonophysics, 1996, 253(1–2): 129-153.
CrossRef Google scholar
Rebai S., Philip H., Taboada A.. Modern Tectonic Stress Field in the Mediterranean Region: Evidence for Variation in Stress Directions at Different Scales. Geophysical Journal International, 1992, 110(1): 106-140.
CrossRef Google scholar
Reilinger R., McClusky S., Oral M., . Global Positioning System Measurements of Present-Day Crustal Movements in the Arabia-Africa-Eurasia Plate Collision Zone. Journal of Geophysical Research, 1997, 102(B5): 9983-9999.
CrossRef Google scholar
Scordilis E. M., Karakaisis G. F., Karakostas B. G., . Evidence for Transform Faulting in the Ionian Sea: The Cephalonia Island Earthquake Sequence of 1983. Pure and Applied Geophysics, 1985, 123(3): 388-397.
CrossRef Google scholar
Sengör A. M. C.. The North Anatolian Transform Fault: Its Age, Offset and Tectonic Significance. Journal of the Geological Society, 1979, 136: 269-282.
CrossRef Google scholar
Sengör A. M. C.. Cross-Faults and Differential Stretching of Hanging Walls in Regions of Low-Angle Normal Faulting: Examples from Western Turkey. Geological Society Special Publications, 1987, 28: 575-589.
CrossRef Google scholar
Steckler M. S., Berthelot F., Lyberis N., . Subsidence in the Gulf of Suez: Implications for Rifting and Plate Kinematics. Tectonophysics, 1988, 153(1–4): 249-270.
CrossRef Google scholar
Tatar O., Piper J. D. A., Gursoy H., . Regional Significance of Neotectonic Counterclockwise Rotation in Central Turkey. International Geology Review, 1996, 38(8): 692-700.
CrossRef Google scholar
Taymaz T., Eyidogan H., Jackson J.. Source Parameters of Large Earthquakes in the East Anatolian Fault Zone (Turkey). Geophysical Journal International, 1991, 106(3): 537-550.
CrossRef Google scholar
Toksoz M. N., Shakal A. F., Michael A. I.. Space-Time Migration of Earthquakes along the North Anatolian Fault Zone and Seismic Gaps. Pure and Applied Geophysics, 1979, 117(6): 1258-1270.
CrossRef Google scholar
Vidal N., Alvarez-Marron J., Klaeschen D.. The Structure of the Africa-Anatolia Plate Boundary in the Eastern Mediterranean. Tectonics, 2000, 19(4): 723-739.
CrossRef Google scholar
Westaway R.. Present-Day Kinematics of the Middle East and Eastern Mediterranean. Journal Geophysical Research, 1994, 99(B6): 12071-12090.
CrossRef Google scholar
Wortel M. J. R., Spakman W.. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 2000, 290(5498): 1910-1917.
CrossRef Google scholar
Yin Z. M., Ranalli G.. Critical Stress Differences, Fault Orientation and Slip Direction in Anisotropic Rocks under Non-Andersonian Stress Systems. Journal of Structural Geology, 1992, 14(2): 237-244.
CrossRef Google scholar
Zheng Y. D., Wang T., Ma M. B., . Maximum Effective Moment Criterion and the Origin of Low-Angle Normal Faults. Journal of Structural Geology, 2004, 26(2): 271-285.
CrossRef Google scholar
Zheng Y. D., Wang T., Zhang J. J.. Structural Analysis of Mylonitic Rocks in the Cougar Creek Complex, Oregon-Idaho Using the Porphyroclast Hyperbolic Distribution Method, and Potential Use of SC-Type Extensional Shear Bands as Quantitative Vorticity Indicators: Discussion. Journal of Structural Geology, 2009, 31(5): 541-543.
CrossRef Google scholar
Zitter, T. A. C., Woodside, J. M., Mascle, J., 2000. Ongoing Deformation along the Western Branch of the Cyprus Arc. European Geophysical Society XXV General Assembly, Nice, France, 25–29 April 2000, Geophysical Research Abstracts, 2, 16
Zoback M. L.. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. Journal of Geophysical Research, 1992, 97(B8): 11703-11728.
CrossRef Google scholar
Zoback M. L., Zoback M. D.. State of Stress in the Conterminous United States. Journal of Geophysical Research, 1980, 85(B11): 6113-6156.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/