Paleofire indicated by polycyclic aromatic hydrocarbons in soil of Jinluojia archaeological site, Hubei, China

Shengli Zou , Rencheng Li , Shucheng Xie , Junying Zhu , Xinjun Wang , Junhua Huang

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (3) : 247 -256.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (3) : 247 -256. DOI: 10.1007/s12583-010-0089-x
Article

Paleofire indicated by polycyclic aromatic hydrocarbons in soil of Jinluojia archaeological site, Hubei, China

Author information +
History +
PDF

Abstract

Combustion-derived and land-plant-derived polycyclic aromatic hydrocarbons (PAHs) have been investigated by using the GC-MS analysis in an ancient soil profile from Jinluojia (金罗家) archaeological site at Macheng (麻城), Hubei (湖北) Province, Central China. Retene, cadalene and simonellite were proposed to be derived from contemporary land plants. The pyrolytic PAHs identified include fluoranthene, pyrene, benzofluoranthenes, benzo[e]pyrene and benzo[a]pyrene. The distribution of these pyrolytic PAHs varies with depth, displaying a pattern different from the land-plant-derived compounds. On the basis of the parameter diagnostic of sources and the distribution patterns, these pyrolytic PAHs were demonstrated to be of combustion origin, rather than petrogenic origins, combustion of petroleum products and coal, or a post-depositional process such as pedogenesis or leaching. These combustion-induced PAHs were believed to result from both natural processes and anthropogenic activities. Two episodes of the elevated content of pyrolytic PAHs and charcoal fragments were identified in Ming-Qing (明清) Dynasty and late Xizhou (西周) to early Dongzhou (东周) Dynasty, inferring the occurrence of two enhanced paleofires. The two enhanced paleofire episodes were found in association with the two cold and dry paleoclimate and two episodes of enhanced abundance of charcoal fragments, inferring a dominance of the natural processes triggering the enhanced paleofire. The two periods of paleofire were also characterized by the frequent and enhanced anthropogenic activities such as war fights, likely suggesting the occurrence of anthropogenic contributions.

Keywords

archaeological site / polycyclic aromatic hydrocarbons / paleofire / charcoal / Central China

Cite this article

Download citation ▾
Shengli Zou, Rencheng Li, Shucheng Xie, Junying Zhu, Xinjun Wang, Junhua Huang. Paleofire indicated by polycyclic aromatic hydrocarbons in soil of Jinluojia archaeological site, Hubei, China. Journal of Earth Science, 2010, 21(3): 247-256 DOI:10.1007/s12583-010-0089-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander R., Larcher A. V., Kagi R. I., . Moldowan J. M., Albrecht P., Philp R. P., . An Oil-Source Correlation Study Using Age-Specific Plant-Derived Aromatic Biomarkers. Biological Markers in Sediments and Petroleum, 1992, Englewood Cliffs, N.J.: Prentice-Hall 201-221.

[2]

Atanassova I., Burmmer G. W.. Polycyclic Aromatic Hydrocarbons of Anthropogenic and Biopedogenic Origin in a Colluviated Hydromorphic Soil of Western Europe. Geoderma, 2004, 120: 27-34.

[3]

Benner B. A., Wise S. A., Currie L. A., . Distinguishing the Contributions of Residential Wood Combustion Acid Mobile Source Emissions Using Relative Concentrations of Dimethylphenanthrene Isomers. Enviro. Sci. Technol., 1995, 29: 2382-2389.

[4]

Blumer M., Youngblood W. W.. Polycyclic Aromatic Hydrocarbons in Soils and Recent Sediments. Science, 1975, 188: 53-55.

[5]

Blumer M.. Polycyclic Aromatic Compounds in Nature. Sci. Am., 1976, 234(3): 34-45.

[6]

Blumer M., Blumer W., Reich T.. Polycyclic Aromatic Hydrocarbons in Soils of a Mountain Valley: Correlation with a Highway Traffic and Cancer Incidence. Environ. Sci. Technol., 1977, 11: 1082-1084.

[7]

Borneff J., Selenka F., Kunte H., . Experimental Studies on the Formation of Polycycling Aromatic Hydrocarbons in Plants. Environ. Res., 1968, 2: 22-29.

[8]

Brown G., Maher W.. The Occurrence, Distribution and Sources of Polycyclic Aromatic Hydrocarbons in the Sediments of the George River Estuary, Australia. Organic Geochemistry, 1992, 18: 657-668.

[9]

Budzinski H., Jones I., Bellocq J., . Evaluation of Sediment Contamination by Polycyclic Aromatic Hydrocarbons in the Gironde Estuary. Mar. Chem., 1997, 58: 85-97.

[10]

Chen J., Wang X. J., Tao S., . Vertical Distribution of Polycyclic Aromatic Hydrooarbons in Soils in Tianjin Area. Acta Scientiae Circumstantiae, 2004, 24(2): 286-290.

[11]

Chiou C. T., Mcgroddy R. L., Kile D. E.. Partition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments. Environ. Sci. Technol., 1998, 132: 264-269.

[12]

Ge Q. S., Fang X. Q., Zheng J. Y.. Warm-Cold Change in Millenarian Cycle Derived from Natural Proxy Data in China during the Past 3 000 Years. Advance in Earth Sciences, 2000, 17(1): 96-103.

[13]

Giger W., Schamffner C.. Determination of Polycyclic Aromatic Hydrocarbons in the Environment by Glass Capillary Gas Chromatography. Analytical Chemistry, 1978, 50: 243-249.

[14]

Gijzen M., Lewinsohn E., Savage T. J., . Teranishi R., Buttery R. G., Sugisawa H., . Conifer Monoterpenes, Biochemistry and Bark Beetle Chemical Ecology. Bioactive Volatile Compounds from Plants, 1992, Washington D. C.: American Chemical Society 8-22.

[15]

Gogou A., Stratigakis N., Kanakidou M., . Organic Aerosols in Eastern Mediterranean: Components Source Reconciliation by Using Molecular Markers and Atmospheric Back Trajectories. Org. Geochem., 1996, 25: 79-96.

[16]

Gräf W., Diehl H.. Űber den Naturbedingten Normalpegel Kanzerogener Polycyclischer Aromate und Seine Ursache. Arch. Hyg. Bakteriol., 1966, 150: 49-59.

[17]

Gschwend P. M., Hites R. A.. Fluxes of Polycyclic Aromatic Hydrocarbons to Marine and Lacustrine Sediments in the Northeastern United States. Geochimica et Cosmochimica Acta, 1981, 45: 2359-2367.

[18]

Hites R. A., Laflamme R. E., Farrington J. W.. Sedimentary Polycyclic Aromatic Hydrocarbons: The Historical Records. Science, 1977, 198: 829-831.

[19]

Hites R. A., Laflamme R. E., Windsor J. G. Jr., . Polycyclic Aromatic Hydrocarbons in an Anoxic Sediment Core from the Pettaquamscutt River (Rhode Island, U.S.A.). Geochimica et Cosmochimica Acta, 1980, 44: 873-878.

[20]

Jiang C. Q., Alexander R., Kagi R. I., . Polycyclic Aromatic Hydrocarbons in Ancient Sediments and Their Relationships to Palaeoclimate. Org. Geochem., 1998, 29(5–7): 1721-1735.

[21]

Jiao D., Xie S., Yang H., . Paleofire Indicated by Triterpenes and Charcoal in a Culture Bed in Eastern Kunlun Mountain, Northwest China. Frontiers of Earth Science in China, 2009, 3(4): 452-456.

[22]

Krauss M., Wilcke W., Zech W.. Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Forest Soils: Depth Distribution as Indicator of Different Fate. Enviro. Pollut., 2000, 110: 79-88.

[23]

Krauss M., Wilcke W.. Sorption Strength of Persistent Organic Pollutants in Particle-Size Fractions of Urban Soils. Soil Sci. Soc. Am. J., 2002, 66: 430-437.

[24]

Laflamme R. E., Hites R. A.. The Global Distribution of Polycyclic Aromatic Hydrocarbons in Recent Sediments. Geochimica et Cosmochimica Acta, 1978, 42: 289-303.

[25]

Larsen R. K., Baker J. E.. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods. Environ. Sci. Technol., 2003, 37: 1873-1881.

[26]

Li J. H., Dong Y. H., Cao Z. H., . Distribution Characteristics and Sources Identification of PAHs in Ancient Paddy Soil. Environmental Science, 2006, 27(6): 1235-1239.

[27]

Li J. H., Dong Y. H., Cao Z. H., . Distribution and Origins of Polycyclic Aromatic Hydrocarbons in a Soil Profile Containing 6 000-Year Old Paddy Soil. Acta Pedologica Sinica, 2006, 44(1): 41-46.

[28]

Li J. H., Dong Y. H., Cao Z. H., . Vertical Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Two Prehistoric Paddy Soil Profiles. Journal of Agro-Environment Science, 2007, 26(1): 224-229.

[29]

Li R., Carter J. A., Xie S., . Phytoliths and Microcharcoal at Jinluojia Archeological Site in Middle Reaches of Yangtze River Indicative of Paleoclimate and Human Activity during the Last 3 000 Years. Journal of Archaeological Science, 2010, 37: 124-132.

[30]

Lipiatou E., Saliot A.. Fluxes and Transport of Anthropogenic and Natural Polycyclic Aromatic Hydrocarbons in the Western Mediterranean Sea. Mar. Chem., 1991, 32: 51-71.

[31]

Liu R. M., Wang X. J., Zheng Y., . Comparisons on Polycyclic Aromatic Hydrocarbons Contents in the Topsoil of Tianjin City with Those of Some Foreign Cities. Journal of Agro-Environment Science, 2004, 23(4): 827-830.

[32]

Maxin C. R., Kögel-Knabner I.. Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) to Water-Soluble Soil Organic Matter. Eur. J. Soil Sci., 1995, 46: 193-204.

[33]

Mensing S. A., Michaelsen J., Byrne R.. A 560-Year Record of Santa Ana Fires Reconstructed from Charcoal Deposited in the Santa Barbara Basin, California. Quaternary Research, 1999, 51: 295-305.

[34]

Nam J. J., Song B. H., Eom K. C., . Distribution of Polycyclic Aromatic Hydrocarbons in Agricultural Soils in South Korea. Chemosphere, 2003, 50: 1281-1289.

[35]

Ping L. F., Luo Y. M., Zhang H. B., . Distribution of Polycyclic Aromatic Hydrocarbons in Thirty Typical Soil Profiles in the Yangtze River Delta Region, East China. Enviro. Pollut., 2007, 147: 358-365.

[36]

Ramdahl T.. Retene: A Molecular Marker of Wood Combustion in Ambient Air. Nature, 1983, 3065: 80-82.

[37]

Readman J. W., Mantoura R. F., Rhead M. M.. A Record of Polycyclic Aromatic Hydrocarbon (PAH) Pollution Obtained from Accreting Sediments of the Tamar Estuary, UK: Evidence for Non-equilibrium Behaviour of PAH. Sci. Total Environ., 1987, 66: 73-94.

[38]

Sicre M. A., Marty J. C., Saliot A., . Aliphatic and Aromatic Hydrocarbons in Different Sized Aerosols over the Mediterranean Sea: Occurrence and Origin. Atmos. Environ., 1987, 21: 2247-2259.

[39]

Simoneit B. R. T.. Diterpenoid Compounds and Other Lipids in Deep-Sea Sediments and Their Geochemical Significance. Geochimica et Cosmochimica Acta, 1977, 41: 463-476.

[40]

Simoneit B. R. T.. Application of Molecular Marker Analysis to Vehicle Exhaust for Source Reconciliations. Int. J. Environ. Anal. Chem., 1985, 22: 203-233.

[41]

Soclo H. H., Garrigues P., Ewald M.. Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) Areas. Mar. Pollut. Bull., 2000, 40: 387-396.

[42]

Tan Y. L., Kong A., Monetti M.. Biogenic Polycyclic Aromatic Hydrocarbons in an Alaskan Arctic Lake Sediment. Polycyclic Aromatic Compounds, 1996, 9: 185-192.

[43]

Tao S., Cui Y. H., Xu B. G., . Polycyclic Aromatic Hydrocarbons PAHs in Agricultural Soil and Vegetables from Tianjin. Sci. Total Environ., 2004, 320: 11-24.

[44]

Thiele S., Brümmer G. W.. Bioformation of Polycyclic Aromatic Hydrocarbons in Soil under Oxygen Deficient Conditions. Soil Biol. Biochem., 2002, 34: 733-735.

[45]

van Aarssen B. G. K., Cox H. C., Hoogendoorn P., . A Cadinene Biopolymer Present in Fossil and Extant Dammar Resins as a Source for Cadinanes and Bicadinanes in Crude Oils from South East Asia. Geochimica et Cosmochimica Acta, 1990, 54: 3021-3031.

[46]

Wakeham S. G., Schaner C., Giger W.. Polycyclic Aromatic Hydrocarbons in Recent Lake Sediments. I. Compounds Having Anthropogenic Origins. Geochimica et Cosmochimica Acta, 1980, 44: 403-413.

[47]

Wakeham S. G., Schaner C., Giger W.. Polycyclic Aromatic Hydrocarbons in Recent Lake Sediments. II. Compounds Derived from Biogenic Precursors during Early Diagenesis. Geochimica et Cosmochimica Acta, 1980, 44: 415-429.

[48]

Wang P. R.. The Mass Chromatograph of Biomarkers, 1993, Beijing: Petroleum Industry Press 60-65.

[49]

Wang Z., Fingas M., Shu Y. Y., . Quantitative Characterization of PAHs in Burn Residue and Soot Samples and Differentiation of Pyrogenic PAHs from Petrogenic PAHs—The 1994 Mobile Burn Study. Environ. Sci. Technol., 1999, 33: 3100-3109.

[50]

Wilcke W., Amelung W., Martius C., . Biological Sources of Polycyclic Aromatic Hydrocarbons (PAHs) in the Amazonian Rain Forest. J. Plant Nutr. Soil Sci., 2000, 163: 27-30.

[51]

Wilcke W., Muller J., Kanchanakool N., . Polycyclic Aromatic Hydrocarbons in Hydromorphic Soils of the Tropical Metropolis Bangkok. Geoderma, 1999, 91: 297-309.

[52]

Williams P. T., Bartle K. D., Andrews G. E.. The Relation between Polycyclic Aromatic Compounds in Diesel Fuels and Exhaust Particulates. Fuel, 1986, 65: 1150-1158.

[53]

Wu Y. H., Yang X. D., Zhu H. H.. Pollen Assemblage and Paleoclimatic Change in Hukou Area of Poyang Lake for the Past 4 500 Years. Journal of Lake Sciences, 1997, 9(1): 29-34.

[54]

Youngblood W. W., Blumer M.. Polycyclic Aromatic Hydrocarbons in the Environment: Homologous Series in Soils and Recent Sediments. Geochimica et Cosmochimica Acta, 1975, 39: 1303-1314.

[55]

Yunker M. B., Macdonald R. W.. Composition and Origins of Polycyclic Aromatic Hydrocarbons in the Mackenzie River and on the Beaufort Sea Shelf. Arctic, 1995, 48: 118-129.

[56]

Yunker M. B., Macdonald R. W., Goyette D., . Natural and Anthropogenic Inputs of Hydrocarbons to the Strait of Georgia. Sci. Total Environ., 1999, 225: 181-209.

[57]

Yunker M. B., Macdonald R. W., Vingarzan R., . PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition. Org. Geochem., 2002, 33: 489-515.

[58]

Yunker M. B., Snowdon L. R., Macdonald R. W., . Polycyclic Aromatic Hydrocarbon Composition and Potential Sources for Sediment Samples from the Beaufort and Barents Seas. Environ. Sci. Technol., 1996, 30: 1310-1320.

[59]

Zhang Z., Wang C., Qiu X., . Occurrence of Highly Abundant Bacterial Hopanoids in Dajiuhu Peatland, Central China. Frontiers of Earth Science in China, 2009, 3(3): 320-326.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/