Geological evolution of Longhushan World Geopark in relation to global tectonics
Timothy M. Kusky , Minghe Ye , Junpeng Wang , Lu Wang
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (1) : 1 -18.
Geological evolution of Longhushan World Geopark in relation to global tectonics
The South China fold belt has experienced a complex series of tectonic events that span 1.0 billion years of earth history. Longhushan (龙虎山) World Geopark is located on the Proterozoic suture between the Yangtze craton and Cathyasia block and highlights the long history of this belt. Collision of the Cathyasia and Yangtze cratons 1.0 billion years ago was associated with the formation of the Rodinian supercontinent where most of the planet’s landmasses were amalgamated into one block. Jurassic through Early Cretaceous magmatism was associated with the inland migration of the continental margin arc associated with the penetration of a flat slab after subduction of the Kula-Farallon ridge. Slab roll-back in the Early to Middle Cretaceous opened many extensional basins across the South China fold belt, including the Xinjiang (信江) basin in which Longhushan is located, and these were filled largely with continental red beds deposited by fluvial systems in the hot torrid climate. The beds are richly fossiliferous, including remains of many dinosaurs and dinosaur eggs. Subduction of the Kula-Pacific plate in the Middle Cretaceous caused a short magmatic pulse, and then, the basins subsided slowly through the remainder of the Cretaceous. Cenozoic uplift of the red bed basins was initiated by the India-Asia collision. The uplift was associated with the formation of many faults, joints, and brittle structures that dissected the red bed deposits. Fluvial erosion of the red beds was enhanced along the brittle structures, and different locations have developed very distinctive and structurally controlled geomorphological features including mesas, kopjies, and isolated stone peaks that are known in China as Danxia (丹霞) land-forms. Together, these features form Danxia landscapes, and Longhushan World Geopark exhibits a complete range of the Danxia landscapes from juvenile, to mature and to old stages of development. The United Nations Educational, Scientific, and Cultural Organization (UNESCO) World Geopark program ensures that these features and geologic history will be preserved in their pristine state and be available for study and appreciation for generations to come.
Longhushan / Cathyasia / South China fold belt / Danxia / red bed / ridge subduction
| [1] |
Bradley, D. C., Kusky, T. M., Haeussler, P., et al., 2003. Geologic Signature of Early Ridge Subduction in the Accretionary Wedge, Forearc Basin, and Magmatic Arc of South-Central Alaska. In: Sisson, V. B., Roeske, S., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during a Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 19–50 |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Haynes, S. J., 1988. Structural Reconnaissance of the Jiangnan Geoanticline: A Suspect Terrane of Compressional Tectonic Character. In: Howell, D. G., Wiley, T. J., eds., Proc. 4th Int. Tectonostratigraphic Terrane Conf., U.S. Geol. Survey, Menlo Park, California. 31–33 |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Jiangxi Bureau of GeologyMineral Resources the Regional Geology of Jiangxi Province, China, 1984, Beijing: Geological Publishing House 921 |
| [16] |
|
| [17] |
Kusky, T. M., Bradley, D. C., Donley, D. T., et al., 2003. Controls on Intrusion of Near-Trench Magmas of the Sanak-Baranof Belt, Alaska, during Paleogene Ridge Subduction, and Consequences for Forearc Evolution. In: Sisson, V. B., Roeske, S., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during a Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 269–292 |
| [18] |
Kusky, T. M., Windley, B. F., Zhai, M. G., 2007a. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 1–34 |
| [19] |
Kusky, T. M., Windley, B. F., Zhai, M. G., 2007b. Lithospheric Thinning in Eastern Asia: Constraints, Evolution, and Tests of Models. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society of London Special Publication, 280: 331–343 |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |