Hydrocarbon generation evaluation of Permo-Carboniferous source rocks in Qinggu-2 well in Dongpu depression, China

Yanming Zhu , Shangbin Chen , Xiaodong Lan , Meng Wang , Junhua Fang

Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (1) : 94 -103.

PDF
Journal of Earth Science ›› 2010, Vol. 21 ›› Issue (1) : 94 -103. DOI: 10.1007/s12583-010-0007-2
Article

Hydrocarbon generation evaluation of Permo-Carboniferous source rocks in Qinggu-2 well in Dongpu depression, China

Author information +
History +
PDF

Abstract

The Dongpu (东濮) depression is a Mesozoic subsidence and Cenozoic fault basin developed within the North China craton. Since the deposition of Permo-Carboniferous hydrocarbon source rock, the depression has undergone many tectonic disturbances and uplifts. The source rocks have undergone nonuniform uplift, deformation, deep burying, and magmatism, and those led to an interrupted or stepwise evolution of the hydrocarbon source rocks in Qinggu (庆古)-2 well. We have investigated the history of burying, heating, and hydrocarbon generation of the Permo-Carboniferous hydrocarbon source rocks not just on the basis of tectonic disturbance and deep burying, but also with new studies in apatite fission track analysis, fluid inclusion measurements, and the application of the numerical simulation of EASY%R o. The heating temperature of the source rocks pulsated upward from Indosinian to Himalayan stages and reached a maximum during early Himalayan. This led to the stepwise increases of organic maturation and multiple stages of hydrocarbon generation. This study delineated the tectonic stages, maturity evolved ranges, and the intensity of hydrocarbon generation of Permo-Carboniferous source rocks in Qinggu-2 well. The hydrocarbon generation mainly occurred during Indosinian and early Himalayan. The early Himalayan stage hydrocarbon generation is the larger one, but the Dongying (东营) movement, which happened at the end of early Himalayan, may destroy the trapped oil and gas. Thereby, future exploration will need to pay more attention to the Dongying movement effect in Qinggu-2 well area, and it may get new breakthrough in Permo-Carboniferous oil and gas.

Keywords

Permo-Carboniferous source rock / tectonic-burial history / hydrocarbon generation / numerical simulation of EASY%R o

Cite this article

Download citation ▾
Yanming Zhu, Shangbin Chen, Xiaodong Lan, Meng Wang, Junhua Fang. Hydrocarbon generation evaluation of Permo-Carboniferous source rocks in Qinggu-2 well in Dongpu depression, China. Journal of Earth Science, 2010, 21(1): 94-103 DOI:10.1007/s12583-010-0007-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen M. B., Macdonald D. I. M., Zhao X., . Early Cenozoic Two-Phase Extension and the Late Cenozoic Thermal Subsidence and Inversion of the Bohai Basin, Northern China. Mar. Petrol. Geol., 1997, 14(7–8): 951-972.

[2]

Bostick, N. H., Cashman, S. M., McCulloh, T. H., et al., 1978. Gradients of Vitrinite Reflectance and Present Temperature in the Los Angeles and Ventura Basins, California. In: Oltz, D. F., ed., Low Temperature Metamorphism of Kerogen and Clay Minerals. Pacific Section SEMP Special Symposium, Los Angeles. 65–96

[3]

Burnham A. K., Sweeney J. J.. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 1989, 53(10): 2649-2657.

[4]

Chen M. X.. The Geothermal in North China, 1988, Beijing: Science Press 1-100.

[5]

Cheng K. M., Xiong Y., Zhang X. B.. An Approach to the Timing Formation for Primary Oil Pools of Ordovician System in Kongxi Buried Hill. Petroleum Exploration and Development, 2002, 29(4): 16-20.

[6]

Corrigan J. D.. Inversion of Apatite Fission Track Data for Thermal History Information. J. Geophys. Res., 1991, 96(B6): 10347-10360.

[7]

Green P. F., Duddy I. R., Gleadow A. J. W., . Thermal Annealing of Fission Tracks in Apatite: 1. A Qualitative Description. Chemical Geology, 1986, 59(4): 237-253.

[8]

Green P. F., Duddy I. R., Laslett G. M.. Thermal Annealing of Fission Tracks in Apatite: 4. Quantitative Modelling Techniques and Extension to Geological Timescales. Chemical Geology, 1989, 79(2): 155-182.

[9]

He Z. L.. Inclusion Mineralogy, 1982, Beijing: Geological Publishing House 1-120.

[10]

Jiang Y. L., Xiong J. H.. Characteristics of Geotemperature and Maturity of Organic Matter in the East Part of Linqing Depression. Journal of the University of Petroleum, China, 1997, 21(1): 6-10.

[11]

Kang T. S., Wang S. C.. The Method of the Apatite Fission Track in Geological History Study, 1991, Beijing: Geological Publishing House 1-50.

[12]

Li D. S., Li D. W.. Tectonic Types of Oil and Gas Basin in China, 2003, Beijing: Petroleum Industry Press 10-42.

[13]

Li G. Y., Lu M. G.. Atlas of China’s Petroliferous Basins, 2002 2nd Edition Beijing: Petroleum Industry Press 1-150.

[14]

Liao Q. J., Yu X. M., He Y. M., . The Characteristics and Resource Potential of Coal-Bearing Formations in Upper Paleozoic in Dagang Oil Field. Natural Gas Geoscience, 2003, 14(4): 250-253.

[15]

Liu J. P., Geng A. S., Xiong Y. Q.. The Application of Stable Carbon and Hydrogen Isotopic Compositions of Individual n-Alkanes to Paleozoic Oil/Source Rock Correlation Enigmas in the Huanghua Depression, China. Pet. Sci. Eng., 2006, 54: 70-78.

[16]

Liu S. S., Zhang F., Hu R. Y., . The Method, Technology and Application with the Apatite Fission Track Age Test, 1984, Beijing: Geological Publishing House 1-30.

[17]

Lu K. Z., Qi J. F.. Tectonic Model of Cenozoic Petroliferous Basin Bohai Bay Province, 1997, Beijing: Geological Publishing House 1-130.

[18]

Morrow D. W., Lessler D. R.. Calculation of Vitrinite Reflectance from Thermal Histories: A Comparison of Some Methods. AAPG Bulletin, 1993, 77: 610-624.

[19]

Naeser C. W., Faul H.. Fission Track Annealing in Apatite and Sphene. J. Geophys. Res., 1969, 74(2): 705-710.

[20]

Qi J. F., Zhang Y. W., Lu K. Z., . Cenozoic Tectonic Evolution in Bohaiwan Basin Province. Journal of the University of Petroleum, China, 1995, 19(Suppl.): 1-6.

[21]

Qin Y., Song D. Y., Wang C.. Coalification of the Upper Paleozoic Coal and Its Control to the Generation and Preservation of Coalbed Methane in the Southern Shanxi. Journal of China Coal Society, 1997, 22(3): 230-235.

[22]

Qin Y., Song D. Y.. The Coalification and Palaeothermal System in Southern Shanxi Province, China, 1998, Beijing: Geological Publishing House 1-90.

[23]

Qin Y., Zhu Y. M., Zhang Y. S., . Theory and Its Application of Hydrocarbon Re-generation from Sedimentary Organic Matters, 2001, Beijing: Geological Publishing House 1-120.

[24]

Ren J., Tamaki K., Li S., . Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 2002, 344(3–4): 175-205.

[25]

Song D. Y., Qin Y.. A New Method of EASY%R o Numerical Simulation for Vitrinite Reflectance Inversion. Coal Geology & Exploration, 1998, 26(3): 15-17.

[26]

Sweeney J. J., Burnham A. K.. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 1990, 74: 1559-1570.

[27]

Wang T. G., Wang F. Y., Lu H., . Research on Source of Oils and Formation Terms of Ordovician Reservoir from Kongxi Buried Hill, Huanghua Depression. Mar. Orig. Petrol. Geol., 2000, 5: 47-54.

[28]

Wang Z. Y., Cheng K. M., Yang C. Y.. Early Paleozoic Primary Oil of Kongxi Buried Hill in Huanghua Depression, Northern China. Petroleum Exploration and Development, 1997, 24(3): 1-4.

[29]

Wang Z. Y., He H. Q., Cheng K. M.. Exploration Prospect of Paleozoic Primary Oil and Gas Pools in North China Platform. Acta Petrolei Sinica, 1999, 20(2): 1-6.

[30]

Wood D. A.. Relationships between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration. AAPG Bulletin, 1988, 72: 115-134.

[31]

Xia, Y. L., Zhu, J. C., Zheng, M. G., et al., 1995. Application of Fission Track and Other New Technics in the Study of Geothermal History for Liaohe Basin. China Nuclear Science and Technology Report, (2): 25–26 (in Chinese)

[32]

Yan B. Z., Zhu Y. M., Liu X. P.. Comparative Analysis of Two Simulation Methods—EASY%R o and TTI-R o—A Case Study of Well Wushen 1, Huanghua Depression. Coal Geology of China, 2005, 17(2): 4-7.

[33]

Ye H., Shedlock K. M., Hellinger S. J., . The North China Basin: An Example of a Cenozoic Rifted Intraplate Basin. Tectonics, 1985, 4(2): 153-169.

[34]

Zeng F. G., Cheng K. M.. The Genesis of Coal-Generated Oil in the Konggu-4 Well in the Huanghua Depression, China. Geology-Geochemistry, 1998, 26(3): 62-66.

[35]

Zhao H. Y., Wang Y. B., Shao L. Y.. Organic Macerals and Hydrocarbon Potential in Different System Tracts of C-P Source Rocks in Bohai Wan Basin—Case Study of Konggu-4 and Dacan-1 Wells. Journal of China University of Mining & Technology, 2004, 33(1): 66-69.

[36]

Zhao Z. Y., Windley B. F.. Cenozoic Tectonic Extension and Inversion of the Jizhong Basin, Hebei, Northern China. Tectonophysics, 1990, 185(1–2): 83-89.

[37]

Zhu Y. M., Qin Y., Fan B. H., . Restoration and Significance of the Original Thickness of Triassic System in Baohai Bay Basin. Journal of China University of Mining & Technology, 2001, 30(2): 195-200.

[38]

Zhu Y. M., Qin Y., Zhang Y. S., . Fission Track Analysis & Evolution of Paleozoic Source Rocks Headed in Huanghua Depression. Journal of Coal Science & Engineering, 2001, 26(2): 113-116.

[39]

Zhu Y. M., Qin Y., Fan B. H., . The Second Hydrocarbon-Generation Evolution of Palaeozoic Source Rocks in the Qigu-1 Well in Huanghua Depression. Acta Geologica Sinica, 2001, 75(3): 426-431.

[40]

Zhu Y. M., Qin Y., Fan B. H., . Evaluation of the Second Hydrocarbon-Generation of the Permo-Carboniferous Source Rocks in Wuqing Depression. Earth Science—Journal of China University of Geosciences, 2004, 29(1): 77-84.

[41]

Zhu Y. M., Wang X. H., Zhang C., . Hydrocarbon-Generation Evolution of the Permo-Carboniferous Coal Measure in Dongpu Depression. Acta Petrolei Sinica, 2007, 28(6): 27-31.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/