Ce anomalies of the Yangtze Region, South China, through the Ordovician and Silurian Transition

Detain Yan, Liqin Zhang, Shuangjian Li

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (6) : 941-948.

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (6) : 941-948. DOI: 10.1007/s12583-009-0087-z
Article

Ce anomalies of the Yangtze Region, South China, through the Ordovician and Silurian Transition

Author information +
History +

Abstract

Systematic Ce anomalies for whole-rock have been obtained from the shale-dominated, continuous, and pelagic sedimentary sequences spanning the Ordovician/Silurian (O/S) boundary at the Tieshui (铁水) of Xiushan (秀山), Chongqing (重庆), South China. Ce anomalies across the O/S boundary are recognized in three intervals, Wufeng (五峰), Guanyinqiao (观音桥) and Longmaxi (龙马溪). The calculated Ce/Ce* values of Wufeng Formation range from 0.84 to 0.96 (avg. 0.90). In the Guanyinqiao Formation, the values of calculated Ce/Ce* range from 0.73 to 0.85 (avg. 0.79). The Ce/Ce* values of uppermost Longmaxi Formation range from 0.87 to 0.96 (avg. 0.91). All along the section, the magnitude of the Ce anomaly is always negative, but is more significant in the Guanyinqiao Formation. The relatively higher Ce/Ce* values in the Wufeng and Longmaxi shales are likely to be due to the sediments deposited under rather reducing conditions. The Ce anomaly apparently does play some regular roles in the anoxic events that accompany prominent mass extinctions, and this work provides new data of critical importance for constraining models on the end-Ordovician anoxic events and mass extinctions.

Keywords

Ce anomaly / redox / mass extinction / Ordovician/Silurian boundary / Yangtze platform

Cite this article

Download citation ▾
Detain Yan, Liqin Zhang, Shuangjian Li. Ce anomalies of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Journal of Earth Science, 2009, 20(6): 941‒948 https://doi.org/10.1007/s12583-009-0087-z

References

Byrne R. H., Kim K. H.. Rare Earth Element Scavenging in Seawater. Geochim. Cosmochim. Acta, 1990, 54(10): 2645-2656.
CrossRef Google scholar
Catherine G., Christophe L. C.. Variations in Ce Anomalies of Conodonts through the Frasnian/Famennian Boundary of Poland (Kowala-Holy Cross Mountains): Implications for the Redox State of Seawater and Biodiversity. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2002, 181(1–3): 299-311.
Chen X., Xiao C., Chen H.. Wufengian (Ashgillian) Graptolite Faunal Differentiation and Anoxic Environment in South China. Acta Palaeontologica Sinica, 1987, 26(3): 326-344.
Chen X., Rong J., Fan J., . Global Correlation of Biozones across the Ordovician-Silurian Boundary. Acta Palaeontologica Sinica, 2000, 39(1): 100-114.
de Baar H. J. W., Bacon M. P., Brewer P. G.. Rare Earth Elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta, 1985, 49: 1943-1959.
CrossRef Google scholar
de Baar H. J. W., German C. R., Elderfield H., . Rare Earth Element Distribution in Anoxic Waters of the Carioca Trench. Geochim. Cosmochim. Acta, 1988, 52: 1203-1219.
CrossRef Google scholar
Desprairies A., Courtois C.. Relation Entre la Composition des Smectites d Alteration Sous-Marine et Leur Cortege de Terres Rares. Earth Planet. Sci. Lett., 1980, 48(1): 124-130.
CrossRef Google scholar
Elderfield H., Greaces M. J.. The Rare Earth Elements in Seawater. Nature, 1982, 296: 214-219.
CrossRef Google scholar
German C. R., Elderfield H.. Rare Earth Elements in Saanich Inlet, British Columbia: A Seasonally Anoxic Basin. Geochim. Cosmochim. Acta, 1989, 53: 2561-2571.
CrossRef Google scholar
German C. R., Elderfield H.. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 1990, 5(5): 823-833.
CrossRef Google scholar
German C. R., Holliday B. P., Elderfield H.. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea. Geochim. Cosmochim. Acta, 1991, 55(12): 3533-3558.
CrossRef Google scholar
Goldberg E. D., Koide M., Schmitt R. A., . Rare-Earth Distributions in the Marine Environment. J. Geophys. Res., 1963, 68(14): 4209-4217.
Hallam A.. The Case for Sea-Level Change as a Dominant Causal Factor in Mass Extinction of Marine Invertebrates. Philos. Trans. R. Sci., 1989, 325(1228): 437-455.
CrossRef Google scholar
Holser W. T., Magaritz M., Ripperdan R. L., Walliser O.. Global Events and Event Stratigraphy in the Phanerozoic: The Case for Sea-Level Change as a Dominant Causal Factor in Mass Extinction of Marine Invertebrates. Philos. Trans. R. Sci., 1995, 12: 205-243.
Holser W. T.. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1997, 132(1–4): 309-323.
CrossRef Google scholar
Jiang S. Y., Zhao H. X., Chen Y. Q.. Trace and Rare Earth Element Geochemistry of Phosphate Nodules from the Lower Cambrian Black Shale Sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chem. Geol., 2007, 244(3–4): 584-604.
CrossRef Google scholar
Kajiwara Y., Yamakita S., Ishida K., . Development of a Largely Anoxic Stratified Ocean and Its Temporary Massive Mixing at the Permian/Triassic Boundary Supported by the Sulfur Isotopic Record. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1994, 111(3–4): 367-379.
CrossRef Google scholar
Kato Y., Nakao K., Isozaki Y.. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chem. Geol., 2002, 182(1): 15-34.
CrossRef Google scholar
Liu Y. G., Miah M. R. U., Schmitt R. A.. Cerium: A Chemical Tracer for Paleo-oceanic Redox Conditions. Geochim. Cosmochim. Acta, 1988, 52: 1361-1371.
CrossRef Google scholar
Metcalfe I.. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangaea and Tethys. Can. Soc. Pet. Geol., Mem., 1994, 17: 97-111.
Mu E., Li J., Ge M., . Late Ordovician Paleogeography of South China. Acta Stratigr. Sin., 1981, 5: 165-170.
Murray R. W., Buchholtz B. M. R., Jones D. L., . Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 1990, 18: 268-271.
CrossRef Google scholar
Murray R. W., Buchholtz B. M. R., Brumsack H. J., . Rare Earth Elements in Japan Sea Sediments and Diagenetic Behavior of Ce/Ce*: Results from ODP Leg 127. Geochim. Cosmochim. Acta, 1991, 55(9): 2453-2466.
CrossRef Google scholar
Murry R. W., Buchholtz B. M. R., Gerlach D. C., . Interoceanic Variation in the Rare Earth, Major, and Trace Element Depositional Chemistry of Chert: Perspectives Gained from the DSDP and ODP Record. Geochim. Cosmochim. Acta, 1992, 56(5): 1897-1913.
CrossRef Google scholar
Piper D. Z.. Rare Earth Elements in Ferromanganese Nodules and Other Marine Phases. Geochim. Cosmochim. Acta, 1974, 38(7): 1007-1022.
CrossRef Google scholar
Racki G., Racka M., Matyja H., . The Frasnian/Famennian Boundary Interval in the South Polish-Moravian Shelf Basins: Integrated Event-Stratigraphical Approach. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2002, 181(1–3): 251-297.
CrossRef Google scholar
Saltzman M. R., Davidson J. P., Holden P., . Sea-Level-Driven Changes in Ocean Chemistry at an Upper Cambrian Extinction Horizon. Geology, 1995, 23: 893-896.
CrossRef Google scholar
Sholkovitz E. R.. Rare Earth Elements in the Sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: Reinterpretation of Terrigenous Input Patterns to the Oceans. Am. J. Sci., 1988, 288(3): 236-281.
Taylor S. R., McLennan S. M.. The Continental Crust: Its Composition and Evolution, 1985, Oxford: Blackwell 311
Tlig S., Steinberg M.. Distribution of Rare Earth Elements (REE) in Size Fractions of Recent Sediments of the Indian Ocean. Chem. Geol., 1982, 37(3–4): 317-333.
CrossRef Google scholar
Wang K., Chatterton B. D. E., Wang Y.. An Organic Carbon Isotope Record of Late Ordovician to Early Silurian Marine Sedimentary Rocks, Yangtze Sea, South China: Implications for CO2 Changes during the Hirnantian Glaciation. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1997, 132: 147-158.
CrossRef Google scholar
Wang K., Orth C. J. Jr., Chatterton B. D. E., . The Great Latest Ordovician Extinction on the South China Plate: Chemostratigraphic Studies of the Ordovician-Silurian Boundary Interval on the Yangtze Platform. Palaeogeogr., Palaeoclimatol., Palaeoecol., 1993, 104(1–4): 61-79.
CrossRef Google scholar
Wright J., Schrader H., Holser W. T.. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochim. Cosmochim. Acta, 1987, 51(3): 631-644.
CrossRef Google scholar
Yan D. T., Chen D., Wang Q., . Environment Redox Changes of the Yangtze Sea during the Ordo-Silurian Transition. Acta Geologica Sinica, 2008, 82(3): 679-689.
Yan D. T., Chen D., Wang Q., . Carbon and Sulfur Isotopic Anomalies across the Ordovician-Silurian Boundary on the Yangtze Platform, South China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2009, 274(1–2): 32-39.
CrossRef Google scholar
Yan D. T., Chen D., Wang Q., Wang J.. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science in China (Ser. D), 2009, 52(1): 38-54.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/