U-Pb zircon age, geochemical and Sr-Nd-Hf isotopic compositions of Neoproterozoic granitoids in northwestern margin of Yangtze block (South China): Implications for Neoproterozoic tectonic evolution

Rong Liu , Benren Zhang , Hongfei Zhang , Honglin Yuan

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (4) : 659 -680.

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (4) : 659 -680. DOI: 10.1007/s12583-009-0058-4
Article

U-Pb zircon age, geochemical and Sr-Nd-Hf isotopic compositions of Neoproterozoic granitoids in northwestern margin of Yangtze block (South China): Implications for Neoproterozoic tectonic evolution

Author information +
History +
PDF

Abstract

The widespread Neoproterozoic magmatism along the Yangtze block carries critical information for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3 (14.97%–17.87%), Na2O (3.80%–5.33%) and Sr (504 ppm–741 ppm), and depletion of Y (<19 ppm) and HREE (e.g., Yb<1.6 ppm), resulting in high Sr/Y (29–161) and (La/Yb)N (7.3–27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon ɛ Hf(t) values of +3.65 to +10.05, whole-rock ɛ Nd(t) values of −0.09 to +2.98 and whole-rock initial 87Sr/86Sr ratios of 0.703 4–0.703 9, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.

Keywords

adakite / LA-ICP-MS U-Pb zircon dating / Sr-Nd-Hf isotopic composition / Neoproterozoic tectonic evolution / northwestern margin of the Yangtze block

Cite this article

Download citation ▾
Rong Liu, Benren Zhang, Hongfei Zhang, Honglin Yuan. U-Pb zircon age, geochemical and Sr-Nd-Hf isotopic compositions of Neoproterozoic granitoids in northwestern margin of Yangtze block (South China): Implications for Neoproterozoic tectonic evolution. Journal of Earth Science, 2009, 20(4): 659-680 DOI:10.1007/s12583-009-0058-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen T.. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1–2): 59-79.

[2]

Barnes C. G., Petersen S. W., Kistler R. W., . Source and Tectonic Implications of Tonalite-Trondhjemite Magmatism in the Klamath Mountains. Contrib. Mineral. Petrol., 1996, 123(1): 40-60.

[3]

Blichert-Toft J., Albarede F.. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 1997, 148(1–2): 243-258.

[4]

Castillo P. R.. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 2006, 51(3): 258-268.

[5]

Castillo P. R., Janney P. E., Solidum R. U.. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contrib. Mineral. Petrol., 1999, 134(1): 33-51.

[6]

Chen J., Foland K. A., Xing F., . Magmatism along the Southeast Margin of the Yangtze Block: Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 1991, 19(8): 815-818.

[7]

Chu N. C., Taylor R. N., Chavagnac V., . Hf Isotope Ratio Analysis Using Multi-collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. J. Anal. Atom. Spectrom., 2002, 17: 1567-1574.

[8]

Chung S. L., Liu D. Y., Ji J. Q., . Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 2003, 31(11): 1021-1024.

[9]

Condie K. C.. TTGs and Adakites: Are They both Slab Melts?. Lithos, 2005, 80(1–4): 33-44.

[10]

DeBievre P., Taylor P. D. P.. Table of the Isotopic Composition of the Elements. Int. J. Mass. Spectrom. Ion Process, 1993, 123: 149

[11]

Defant M. J., Drummond M. S.. Derivation of Some Modern Arc Magmas by the Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.

[12]

Defant M. J., Drummond M. S.. Derivation of Some Modern Magmas through Melting of Young Subducted Lithosphere. EOS, Transactions, American Geophysical Union, 1990, 71(43): 1715

[13]

Defant M. J., Jackson T. E., Drummond M. S., . The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa-Rica: An Overview. Journal of the Geological Society, 1992, 149(4): 569-579.

[14]

Drummond M. S., Defant M. J., Kepezhinskas P. K.. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 1996, 87: 205-215.

[15]

Gao S., Ling W. L., Qiu Y. M., . Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2071-2088.

[16]

Gao S., Rudnick R. L., Yuan H. L., . Recycling Lower Continental Crust in the North China Craton. Nature, 2005, 432(7019): 892-897.

[17]

Gao S., Zhang B. R., Li Z. X.. Geochemical Evidence for Proterozoic Continental Arc and Continental-Margin Rift Magmatism along the Northern Margin of the Yangtze Craton, South China. Precambrian Research, 1990, 47(3–4): 205-221.

[18]

Garrison J. M., Davidson J. P.. Dubious Case for Slab Melting in the Northern Volcanic Zone of the Andes. Geology, 2003, 31: 565-568.

[19]

Griffin W. L., Wang X., Jackson S. E., . Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 2002, 61(3–4): 237-269.

[20]

Guo L. Z., Shi Y. S., Ma R. S.. The Geotectonic Framework and Crustal Evolution of South China. Scientific Paper on Geology for International Exchange, 1980, Beijing: Geological Publishing House

[21]

Gutscher M. A., Maury R., Eissen J. P., . Can Slab Melting be Caused by Flat Subduction?. Geology, 2000, 28(6): 535-538.

[22]

Hou Z. Q., Gao Y. F., Qu X. M., . Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 2004, 220(1–2): 139-155.

[23]

Kay R. W., Kay S. M.. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 2002, 18(3): 303-311.

[24]

Kay S. M., Ramos V. A., Marquez M.. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America. Journal of Geology, 1993, 101(6): 703-714.

[25]

Kepezhinskas P. K., McDermott F., Defant M. J., . Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 1997, 61(3): 577-600.

[26]

Li X. H.. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 1999, 97(1–2): 43-57.

[27]

Li X. H., Li Z. X., Sinclair J. A., . Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 2003, 122(1–4): 45-83.

[28]

Li X. H., Li Z. X., Sinclair J. A., . Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 2006, 151(1–2): 14-30.

[29]

Li X. H., Li Z. X., Sinclair J. A., . Reply to the Comment by Zhou et al. on: “Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China” (Precambrian Research, 151: 14–30). Precambrian Research, 2007, 155(3–4): 318-323.

[30]

Li X. H., Li Z. X., Zhou H. W., . U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 2002, 113(1–2): 135-154.

[31]

Li X. H., Li Z. X., Zhou H. W., . SHRIMP U-Pb Zircon Age, Geochemistry and Nd Isotope of the Guandaoshan Pluton in SW Sichuan: Petrogenesis and Tectonic Significance. Science in China (Series D), 2003, 46(S1): 73-83.

[32]

Li X. H., McCulloch M. T.. Secular Variation in the Nd Isotopic Composition of Neoproterozoic Sediments from the Southern Margin of the Yangtze Block: Evidence for a Proterozoic Continental Collision in Southeast China. Precambrian Research, 1996, 76(1–2): 67-76.

[33]

Li Z. X.. 830–820 Ma Mafic to Felsic Igneous Activity in South China and the Breakup of Rodinia. Gondwana Research, 1999, 2(4): 591

[34]

Li Z. X., Li X. H., Kinny P. D., . The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China?. Earth and Planetary Science Letters, 1999, 173(3): 171-181.

[35]

Li Z. X., Li X. H., Kinny P. D., . Geochronology of Neoproterozoic Syn-rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 2003, 122(1–4): 85-109.

[36]

Li Z. X., Li X. H., Zhou H. W., . Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 2002, 30(2): 163-166.

[37]

Li Z. X., Zhang L., Powell C. M.. South China in Rodinia: Part of the Missing Link between Australia-East-Antarctica and Laurentia. Geology, 1995, 23: 407-410.

[38]

Ling W. L., Gao S., Zhang B. R., . Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 2003, 122(1–4): 111-140.

[39]

Ling W. L., Gao S., Cheng J. P., . Neoproterozoic Magmatic Events within the Yangtze Continental Interior and along Its Northern Margin and Their Tectonic Implication: Constraint from the ELA-ICPMS U-Pb Geochronology of Zircons from the Mangling and Hannan Complexes. Acta Petrologica Sinica, 2006, 22(2): 387-396.

[40]

Lo’pez S., Castro A.. Determination of the Fluid-Absent Solidus and Supersolidus Phase Relationships of MORB-Derived Amphibolites in the Range 4–14 kbar. Am. Mineral., 2001, 86: 1396-1403.

[41]

Lo’pez S., Castro A., Garcia-Casco A.. Production of Granodiorite Melt by Interaction between Hydrous Mafic Magma and Tonalitic Crust: Experimental Constraints and Implications for the Generation of Archaean TTG Complexes. Lithos, 2005, 79(1–2): 229-250.

[42]

Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Center Special Publication

[43]

Martin H., Smithies R. H., Rapp R., . An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 2005, 79(1–2): 1-24.

[44]

Muir R. J., Weaver S. D., Bradshaw J. D., . The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society of London, 1995, 152(Part4): 689-701.

[45]

O’Connor J. T.. A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratios. U.S. Geol. Surv. Prof. Pap., 1965, 525-B: 79-84.

[46]

Peacock S. M., Rushmer T., Thompson A. B.. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 1994, 121(1–2): 227-244.

[47]

Petford N., Atherton M.. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. J.Petrol., 1996, 37(6): 1491-1521.

[48]

Prouteau G., Maury R. C., Pubellier M., . Post-Collisional Magmatism from NW Borneo: Evidence for Melting of an Oceanic Crust Deliver within the Upper Mantle. Bulletin de la Societe Geologique de France, 2001, 172(3): 319-332.

[49]

Prouteau G., Scaillet B.. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. J. Petrol., 2003, 44(12): 2203-2241.

[50]

Rapp R. P., Shimizu N., Norman M. D., . Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 1999, 160(4): 335-356.

[51]

Rapp R. P., Watson E. B.. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust Mantle Recycling. J. Petrol., 1995, 36(4): 891-931.

[52]

Sajona F. G., Maury R. C., Pubellier M., . Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines). Lithos, 2000, 54(3–4): 173-206.

[53]

Scherer E., Munker C., Mezger K.. Calibration of the Lutetium-Hafnium Clock. Science, 2001, 293(5530): 683-687.

[54]

Smithies R. H.. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 2000, 182(1): 115-125.

[55]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Sunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins.Geological Society of London Special Publication, 42: 313–345

[56]

Takahashi Y., Kagashima S. I., Mikoshiba M. U.. Geochemistry of Adakitic Quartz Diorite in the Yamizo Mountains, Central Japan: Implications for Early Cretaceous Adakitic Magmatism in the Inner Zone of Southwest Japan. Island Arc, 2005, 14(2): 150-164.

[57]

Vervoort J. D., Blichert-Toft J.. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 1999, 63(3–4): 533-556.

[58]

Wang J., Li Z. X.. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 2003, 122(1–4): 141-158.

[59]

Wang Q., McDermott F., Xu J. F., . Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 2005, 33(6): 465-468.

[60]

Wang Q., Xu J. F., Jian P., . Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 2006, 47(1): 119-144.

[61]

Wang X. L., Zhou J. C., Qiu J. S., . Comment on “Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?” by Xian-Hua Li et al. (Precambrian Research, 122: 45–83). Precambrian Research, 2004, 132(4): 401-403.

[62]

Wang X. L., Zhou J. C., Qiu J. S., . Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 2004, 135(1–2): 79-103.

[63]

Wang X. L., Zhou J. C., Qiu J. S., . Geochemistry of the Meso-Neoproterozoic Volcanic-Intrusive Rocks from Hunan Province and Its Petrogenic Significances. Acta Petrologica Sinica, 2003, 19(1): 49-60.

[64]

White A. J. R., Chappell B. W.. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 1977, 43(1–2): 7-22.

[65]

Winther K. T.. An Experimentally Based Model for the Origin of Tonalitic and Trondhjemitic Melts. Chem. Geol., 1996, 127(1–3): 43-59.

[66]

Wu F. Y., Yang Y. H., Xie L. W., . Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chem. Geol., 2006, 234(1–2): 105-126.

[67]

Wu R. X., Zheng Y. F., Wu Y. B., . Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 2006, 146(3–4): 179-212.

[68]

Xiao L., Zhang H. F., Ni P. Z., . LA-ICP-MS U-Pb Zircon Geochronology of Early Neoproterozoic Mafic-Intermediate Intrusions from NW Margin of the Yangtze Block, South China: Implication for Tectonic Evolution. Precambrian Research, 2007, 154(3–4): 221-235.

[69]

Xu J. F., Shinjo R., Defant M. J., . Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 2002, 30(12): 1111-1114.

[70]

Yan D. P., Zhou M. F., Wang C. Y., . Structural and Geochronological Constraints on the Tectonic Evolution of the Dulong-Song Chay Tectonic Dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 2006, 28(4–6): 332-353.

[71]

Yan Z.. Granite of Shaanxi Province, 1985, Xi’an: Xi’an Jiaotong University Press 59-63.

[72]

Yuan H. L., Gao S., Liu X. M., . Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.

[73]

Zhang Z. Q., Zhang G. W., Tang S. H., . Geochronology of the Hannan Intrusive Complex to Adjoin the Qinling Orogen and Its Rapid Cooling Reason. Chinese Science Bulletin, 2001, 46(8): 685-689.

[74]

Zheng Y. F., Wu Y. B., Chen F. K., . Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 2004, 68(20): 4145-4165.

[75]

Zheng Y. F., Wu Y. B., Gong B., . Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite. Earth and Planetary Science Letters, 2007, 256(1–2): 196-210.

[76]

Zheng Y. F., Zhang S. B.. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 2007, 52(1): 1-12.

[77]

Zheng Y. F., Zhang S. B., Zhao Z. F., . Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 2007, 96(1–2): 127-150.

[78]

Zhou J. C., Wang X. L., Qiu J. S., . Lithogeochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi. Acta Petrologica Sinica, 2003, 19(1): 9-18.

[79]

Zhou J. C., Wang X. L., Qiu J. S., . Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China: Arc or Plume Magmatism?. Geochemical Journal, 2004, 38(2): 139-152.

[80]

Zhou M. F., Kennedy A. K., Sun M., . Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. Journal of Geology, 2002, 110(5): 611-618.

[81]

Zhou M. F., Ma Y., Yan D. P., . The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 2006, 144(1–2): 19-38.

[82]

Zhou M. F., Yan D. P., Kennedy A. K., . SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 2002, 196(1–2): 51-67.

[83]

Zhou M. F., Yan D. P., Wang C. L., . Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 2006, 248(1–2): 286-300.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/