Early analogue modeling experiments and related studies to today’s problems of geo-electromagnetic exploration

László Szarka

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (3) : 618 -625.

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (3) : 618 -625. DOI: 10.1007/s12583-009-0051-y
Article

Early analogue modeling experiments and related studies to today’s problems of geo-electromagnetic exploration

Author information +
History +
PDF

Abstract

As I learned it from extensive geo-electromagnetic analogue modeling experiments, some specific nonconventional interpretation parameters, in certain conditions, give more detailed information about the geometry of subsurface resistivity inhomogeneities than the routinely used parameters. In this article, I show several examples, and I present how these early results influenced our later research. An enhanced geometric sensitivity may be due to special array geometry (as we call it “null array”), or it may be due to a narrow and very special frequency range (i.e., the so-called “keyhole” range). Nonconventional but physically based interpretation parameters (like the Poynting vector) or higher order invariants of resistivity or impedance tensors may also give useful additional information about the shape of subsurface bodies. One should be very careful in their application because a large part of these nontraditional approaches are strongly constrained by measuring errors and geological noise.

Keywords

electromagnetic method / analogue modeling / null component / rotational invariant

Cite this article

Download citation ▾
László Szarka. Early analogue modeling experiments and related studies to today’s problems of geo-electromagnetic exploration. Journal of Earth Science, 2009, 20(3): 618-625 DOI:10.1007/s12583-009-0051-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ádám A., Pongrácz J., Szarka L., . Analogue Model for Studying Geoelectric Methods in the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences. Acta Geod. Geoph. Mont. Hung., 1981, 16(2–4): 359-380.

[2]

Edwards R. N.. The Magnetometric Resistivity Method and Its Application to the Mapping of a Fault. Can. J. Earth Sci., 1974, 11: 1136-1156.

[3]

Frischknecht F. C.. Nabighian M. N.. Electromagnetic Physical Scale Modelling. Electromagnetic Methods in Applied Geophysics—Theory, 1988, Tulsa, Oklahoma: Society of Exploration Geophysicists 365-441.

[4]

He, Z. X., 2008. New Progress of Petroleum EM Prospecting and Case Studies in China. Review Paper S4-E07 Presented at the 19th International Workshop on Electromagnetic Induction in the Earth. Abstracts. 413–421

[5]

Märcz G., Pongrácz J., Szarka L.. Electromagnetic Scale Modeling Instrument for Geophysical Prospecting. Naucnaya Apparatura (Wroclaw), 1986, 1: 119-133.

[6]

Szalai S.. DC Null Arrays: [Dissertation], 2001, Sopron: University of West-Hungary

[7]

Szalai S., Novák A., Szarka L.. Depth of Investigation and Vertical Resolution of Surface Geoelectric Arrays. Journal of Environmental and Engineering Geophysics, 2009, 14: 15-23.

[8]

Szalai S., Szarka L.. On the Classification of Surface Geoelectric Arrays. Geophysical Prospecting, 2008, 56: 159-175.

[9]

Szalai S., Szarka L.. Parameter Sensitivity Maps of Surface Geoelectric Arrays. I. Linear Arrays. Acta Geod. Geoph. Hung., 2008, 43(4): 439-447.

[10]

Szalai S., Szarka L.. Parameter Sensitivity Maps Surface Geoelectric Arrays. II. Nonlinear and Focused Arrays. Acta Geod. Geoph. Hung., 2008, 43: 439-447.

[11]

Szalai, S., Szarka, L., Marquis, G., et al., 2004. Colinear Null Arrays in Geoelectrics: IAGA WG 1.2 on EM Induction in the Earth. Proceedings of the 17th Workshop Hyderabad, India. Paper S.3-P.3. Available at http://www.Emindia2004.Org, Mtnet: www.Geophysics.Dias.Ie/Mtnet/

[12]

Szalai S., Szarka L., Prácser E., . Geoelectric Mapping of Near-Surface Karstic Fractures by Using Null-Arrays. Geophysics, 2002, 67: 1769-1778.

[13]

Szalai, S., Szarka, L., Révi, G., et al., 2005. Geoelectric Investigation of a Multidirectional Fissure System in a Karstic Area. P047 Near Surface 2005, Palermo, 4–7 September, 2005

[14]

Szarka L.. Geophysical Mapping by Stationary Electric and Magnetic Field Components: A Combination of Potential Gradient Mapping (PM) and Magnetometric Resistivity (MMR) Method. Geophysical Prospecting, 1987, 35: 434-444.

[15]

Szarka L.. Detectability of High-Conductivity Plates by the CSAMT Method on Basis of Analogue Modelling Results: An Interesting Analogue Modeling Experience. Acta Geod. Geoph. Mont. Hung., 1991, 26: 273-285.

[16]

Szarka L.. A Compact Representation of Two-Layered Magnetotelluric Response. Geophysical Prospecting, 1997, 45: 763-774.

[17]

Szarka L.. Illustration of Some 3-D Magnetotelluric Parameters on a Festive Occasion. Publ. Univ. of Miskolc, Series A Mining, 1997, 52: 149-161.

[18]

Szarka L., Ádám A., Menvielle M.. Field Test of a Quick-Look Imaging Method Based on Rotational Invariants of the 3-D Magnetotelluric Tensor. Geophysical Prospecting, 2005, 53: 325-334.

[19]

Szarka L., Menvielle M.. A Possibility for an Enhanced 3D Parameter-Sensitivity—The Keyhole Imaging. Geophysical Prospecting, 1999, 47: 59-71.

[20]

Szarka L., Menvielle M.. Analysis of Rotational Invariants of the Magnetotelluric Impedance Tensor. Geophysical Journal International, 1997, 129: 133-142.

[21]

Szarka L., Menvielle M., Spichak V. V.. Imaging Properties of Apparent Resistivities Based on Rotational Invariants of the Magnetotelluric Impedance Tensor. Acta Geod. Geoph. Hung., 2000, 35(2): 149-175.

[22]

Szarka L., Nagy Z.. A Possibility of an Electromagnetic Technique to Locate Oil Reservoir Boundaries on Basis of Analogue Modeling Experiments. Acta Geod. Geoph. Mont. Hung., 1992, 27(1): 131-138.

[23]

Szarka L., Zhang D., Ádám A.. How Magnetotellurics Is Able to See through 3D Near-Surface Inhomogeneities?. Acta Geod. Geoph. Hung., 2004, 39: 1-14.

[24]

Varga M., Novák A., Szarka L.. Application of Tensorial Electrical Resistivity Mapping to Archaeological Prospection. Near Surface Geophysics, 2008, 6(1): 39-47.

[25]

Zhang D., Szarka L., Ádám A.. 3-Dimensional MT Correlation Sounding Curve Research. Oil Geophysical Prospecting, 2004, 39: 4-8.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/