High-frequency Rayleigh-Wave method

Jianghai Xia , Richard D. Miller , Yixian Xu , Yinhe Luo , Chao Chen , Jiangping Liu , Julian Ivanov , Chong Zeng

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (3) : 563 -579.

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (3) : 563 -579. DOI: 10.1007/s12583-009-0047-7
Article

High-frequency Rayleigh-Wave method

Author information +
History +
PDF

Abstract

High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.

Keywords

Rayleigh wave / dispersion / high mode / mode separation / seismic modeling / model appraisal

Cite this article

Download citation ▾
Jianghai Xia, Richard D. Miller, Yixian Xu, Yinhe Luo, Chao Chen, Jiangping Liu, Julian Ivanov, Chong Zeng. High-frequency Rayleigh-Wave method. Journal of Earth Science, 2009, 20(3): 563-579 DOI:10.1007/s12583-009-0047-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbiss C. P.. Shear Wave Measurements of the Elasticity of the Ground. Géotechnique, 1981, 31(1): 91-104.

[2]

Babuska V., Cara M.. Seismic Anisotropy in the Earth, 1991, Boston: Kluwer Academic Publishers 217

[3]

Backus G. E., Gilbert J. F.. Uniqueness in the Inversion of Inaccurate Gross Earth Data. Phil. Trans. Roy. Soc. London, Ser., A, 1970, 266: 123-192.

[4]

Beaty K. S., Schmitt D. R., Sacchi M.. Simulated Annealing Inversion of Multimode Rayleigh-Wave Dispersion Curves for Geological Structure. Geophys. J. Int., 2002, 151(2): 622-631.

[5]

Calderón-Macías C., Luke B.. Addressing Nonuniqueness in Inversion of Rayleigh-Wave Data for Shallow Profiles Containing Stiff Layers. Geophysics, 2007, 72(1): U1-U10.

[6]

Chen C., Liu J., Xia J., . Integrated Geophysical Techniques in Detecting Hidden Dangers in River Embankments. Journal of Environmental and Engineering Geophysics, 2006, 11(2): 83-94.

[7]

Clayton, C. R. I., 1993. The Standard Penetration Test (SPT): Methods and Use: Construction Industry Research and Information Association. Funder Report CP/7, London. 129

[8]

Clayton C. R. I., Matthews M. C., Simons N. E.. Site Investigation, 1995, Oxford: Blackwell Science 584

[9]

Coruh C.. Stretched Automatic Amplitude Adjustment of Seismic Data. Geophysics, 1985, 50(2): 252-256.

[10]

Dobry R., Borcherdt R. D., Crouse C. B., . New Site Coefficients and Site Classification System Used in Recent Building Seismic Code Provisions. Earthquake Spectra, 2000, 16(11): 41-67.

[11]

Dorman J., Ewing M.. Numerical Inversion of Seismic Surface Wave Dispersion Data and Crust-Mantle Structure in the New York-Pennsylvania Area. Journal of Geophysical Research, 1962, 67(9): 3554

[12]

Forbriger T.. Inversion of Shallow-Seismic Wavefields: I. Wavefield Transformation. Geophys. J. Int., 2003, 153(3): 719-734.

[13]

Garland G. D.. Introduction to Geophysics: Mantle, Core and Crust, 1979 2nd Edition Philadelphia: W. B. Saunders Company 494

[14]

Imai, T., Tonouchi, K., 1982. Correlation of N-Value with S-Wave Velocity and Shear Modulus. Proceedings of the Second European Symposium on Penetration Testing. 67–72

[15]

Ivanov J., Miller R. D., Lacombe P., . Delineating a Shallow Fault Zone and Dipping Bedrock Strata Using Multichannal Analysis of Surface Waves with a Land Streamer. Geophysics, 2006, 71(5): A39-A42.

[16]

Ivanov J., Miller R. D., Xia J., . Joint Analysis of Refractions with Surface Waves: An Inverse Solution to the Refraction-Traveltime Problem. Geophysics, 2006, 71(6): R131-R138.

[17]

Jin S., Cambois G., Vuilermoz C.. Shear-Wave Velocity and Density Estimation from PS-Wave AVO Analysis: Application to an OBS Dataset from the North Sea. Geophysics, 2000, 65(5): 1446-1454.

[18]

Liang Q., Chen C., Zeng C., . Inversion Stability Analysis of Multimode Rayleigh Wave Dispersion Curves Using Low-Velocity-Layer Models. Near Surface Geophysics, 2008, 6(3): 157-165.

[19]

Lu L., Wang C., Zhang B.. Inversion of Multimode Rayleigh Waves in the Presence of a Low Velocity Layer: Numerical and Laboratory Study. Geophys. J. Int., 2007, 168(3): 1235-1246.

[20]

Luo Y., Xia J., Liu J., . Joint Inversion of High-Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 2007, 62(4): 375-384.

[21]

Luo Y., Xia J., Miller R. D., . Rayleigh-Wave Dispersive Energy Imaging by High-Resolution Linear Radon Transform. Pure and Applied Geophysics, 2008, 165(5): 903-922.

[22]

Luo Y., Xia J., Liu J., . Generation of a Pseudo-2D Shear-Wave Velocity Section by Inversion of a Series of 1D Dispersion Curves. Journal of Applied Geophysics, 2008, 64(3–4): 115-124.

[23]

Luo, Y., Xia, J., Miller, R. D., et al., 2008c. Rayleigh-Wave Dispersive Energy Imaging and Mode Separating by High-Resolution Linear Radon Transform. Proceedings of the 2008 International Conference on Environmental and Engineering Geophysics (ICEEG), June 15–20, Wuhan, China. 81–86

[24]

Luo Y., Xia J., Xu Y., . Rayleigh-Wave Dispersive Energy Imaging and Mode Separating by High-Resolution Linear Radon Transform. The Leading Edge, 2008, 27(11): 1536-1542.

[25]

Luo Y., Xia J., Liu J., . Research on the Middle-of-Receiver-Spread Assumption of the MASW Method. Soil Dynamics and Earthquake Engineering, 2009, 29(1): 71-79.

[26]

Luo Y., Xia J., Xu Y., . Dipping Interface Mapping Using Mode-Separated Rayleigh Waves. Pure and Applied Geophysics, 2009, 166(3): 353-374.

[27]

Marquardt D. W.. An Algorithm for Least Squares Estimation of Nonlinear Parameters. Jour. Soc. Indus. Appl. Math., 1963, 2: 431-441.

[28]

Matthews M. C., Hope V. S., Clayton C. R. I.. The Use of Surface Waves in the Determination of Ground Stiffness Profiles. Proc. Instn. Civ. Engrs., Geotechnical Engineering, 1996, 119: 84-95.

[29]

Mayne W. H.. Horizontal Data Stacking Techniques. Supplement to Geophysics, 1962, 27: 927-937.

[30]

McMechan G. A., Yedlin M. J.. Analysis of Dispersive Waves by Wave Field Transformation. Geophysics, 1981, 46(6): 869-874.

[31]

Menke W.. Geophysical Data Analysis-Discrete Inversion Theory, 1984, New York: Academic Press, Inc. 260

[32]

Miller, R. D., Xia, J., 1999. Feasibility of Seismic Techniques to Delineate Dissolution Features in the Upper 600 ft at Alabama Electric Cooperative’s Proposed Damascus Site, Interim Report. Kansas Geological Survey, Open-File Report 99-3

[33]

Miller R. D., Xia J., Park C. B., . Multichannel Analysis of Surface Waves to Map Bedrock. The Leading Edge, 1999, 18: 1392-1396.

[34]

Minster J. B., Jordan T. J., Molnar P., . Numerical Modeling of Instantaneous Plate Tectonics. Geophys. J. Roy. Astron. Soc., 1974, 36: 541-576.

[35]

Moro, G. D., Pipan, M., Forte, E., et al., 2003. Determination of Rayleigh Wave Dispersion Curves for Near Surface Applications in Unconsolidated Sediments. Technical Program with Biographies, the 73rd Annual Meeting of the Society of Exploration Geophysicists, Dallas, TX. 1247–1250

[36]

Nazarian, S., Stokoe, K. H. II, Hudson, W. R., 1983. Use of Spectral Analysis of Surface Waves Method for Determination of Moduli and Thicknesses of Pavement Systems. Transportation Research Record, (930): 38–45

[37]

Park, C. B., Miller, R. D., Xia, J., 1998. Imaging Dispersion Curves of Surface Waves on Multi-channel Record. Technical Program with Biographies, the 68th Annual Meeting of the Society of Exploration Geophysicists, New Orleans, Louisiana. 1377–1380

[38]

Park C. B., Miller R. D., Xia J.. Multi-Channel Analysis of Surface Waves. Geophysics, 1999, 64(3): 800-808.

[39]

Putnam, N., Nasseri-Moghaddam, A., Kovin, O., et al., 2008. Preliminary Analysis Using Surface Wave Methods to Detect Shallow Manmade Tunnels. Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), Annual Meeting of the Environmental and Engineering Geophysical Society (EEGS), April 6–10, 2008, Philadelphia, PA. 679–688

[40]

Rix G. J., Leipski A. E.. Accuracy and Resolution of Surface Wave Inversion: Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics. Geotechnical Special Publication, 1991, 29: 17-32.

[41]

Rix G. J., Lai C. D., Spang A. W. Jr.. In Situ Measurement of Damping Ratio Using Surface Waves. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 472-480.

[42]

Sabetta, F., Bommer, J., 2002. Modification of the Spectral Shapes and Subsoil Conditions in Eurocode 8. 12th European Conference on Earthquake Engineering: Paper Ref. 518

[43]

Schwab F. A., Knopoff L.. Bolt B. A.. Fast Surface Wave and Free Mode Computations. Methods in Computational Physics, 1972, New York: Academic Press 87-180.

[44]

Sêcoe, E., Pinto, P. S., 2002. Eurocode 8-Design Provisions for Geotechnical Structures. Special Lecture, 3rd Croatian Soil Mechanics and Geotechnical Engineering Conference, 2002 Hvar. CD-ROM

[45]

Sheriff R. E.. Encyclopedic Dictionary of Applied Geophysics, 2002 4th Ed. Tulsa, OK: Society of Exploration Geophysicists 429

[46]

Sheriff R. E., Geldart L. P.. Exploration Seismology (Volume 1): History, Theory, and Data Acquisition, 1983, New York: Cambridge University Press 253

[47]

Song X., Gu H.. Utilization of Multimode Surface Wave Dispersion for Characterizing Roadbed Structure. Journal of Applied Geophysics, 2007, 63(2): 59-67.

[48]

Song Y. Y., Castagna J. P., Black R. A., . Sensitivity of Near-Surface Shear-Wave Velocity Determination from Rayleigh and Love Waves. Technical Program with Biographies, the 59th Annual Meeting of the Society of Exploration Geophysicists, 1989, 59: 509-512.

[49]

Steeples D. W., Baker G. S., Schmeissner C.. Toward the Autojuggie: Planting 72 Geophones in 2 Sec. Geophysical Research Letters, 1999, 26(8): 1085-1088.

[50]

Stokoe K. H. II, Nazarian S.. Effectiveness of Ground Improvement from Spectral Analysis of Surface Waves. Proceeding of the Eighth European Conference on Soil Mechanics and Foundation Engineering, 1983, 1: 91-95.

[51]

Stokoe K. H. II, Wright G. W., Bay J. A., . Woods R. D., . Characterization of Geotechnical Sites by SASW Method. Geophysical Characterization of Sites. ISSMFE Technical Committee #10, New Delhi, 1994, Oxford: Oxford Publishers 15-25.

[52]

Tian G., Steeples D. W., Xia J., . Useful Resorting in Surface Wave Method with the Autojuggie. Geophysics, 2003, 68(6): 1906-1908.

[53]

Tian G., Steeples D. W., Xia J., . Multichannel Analysis of Surface Wave Method with the Autojuggie. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 243-247.

[54]

Tokimatsu K., Kuwayama S., Tamura S., . V s Determination from Steady State Rayleigh Wave Method. Soils and Foundations, 1991, 31(2): 153-163.

[55]

Vardoulakis I., Verttos C.. Dispersion Law of Rayleigh-Type Waves in a Compressible Gibson Half-Space. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(6): 639-655.

[56]

Xia, J., Miller, R. D., Park, C. B., 1998. Construction of Vertical Section of Near-Surface Shear-Wave Velocity from Ground Roll. Technical Program, the Society of Exploration Geophysicists and the Chinese Petroleum Society Beijing 98’ International Conference. 29–33

[57]

Xia J., Miller R. D., Park C. B.. Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Wave. Geophysics, 1999, 64(3): 691-700.

[58]

Xia J., Miller R. D., Park C. B.. Advantages of Calculating Shear-Wave Velocity from Surface Waves with Higher Modes. Technical Program with Biographies, the 70th Annual Meeting of the Society of Exploration Geophysicists, 2000, 70: 1295-1298.

[59]

Xia J., Miller R. D., Park C. B., . Comparing Shear-Wave Velocity Profiles Inverted from Multichannel Analysis of Surface Wave with Borehole Measurements. Soil Dynamics and Earthquake Engineering, 2002, 22(3): 181-190.

[60]

Xia J., Miller R. D., Park C. B., . A Pitfall in Shallow Shear-Wave Refraction Surveying. Journal of Applied Geophysics, 2002, 51(1): 1-9.

[61]

Xia J., Miller R. D., Park C. B., . Determining Q of Near-Surface Materials from Rayleigh Waves. Journal of Applied Geophysics, 2002, 51(2–4): 121-129.

[62]

Xia J., Miller R. D., Park C. B., . Inversion of High Frequency Surface Waves with Fundamental and Higher Modes. Journal of Applied Geophysics, 2003, 52(1): 45-57.

[63]

Xia J., Chen C., Li P. H., . Delineation of a Collapse Feature in a Noisy Environment Using a Multichannel Surface Wave Technique. Géotechnique, 2004, 54(1): 17-27.

[64]

Xia J., Miller R. D., Park C. B., . Utilization of High-Frequency Rayleigh Waves in Near-Surface Geophysics. The Leading Edge, 2004, 23(8): 753-759.

[65]

Xia J., Chen C., Tian G., . Resolution of High-Frequency Rayleigh-Wave Data. Journal of Environmental and Engineering Geophysics, 2005, 10(2): 99-110.

[66]

Xia J., Xu Y., Chen C., . Simple Equations Guide High-Frequency Surface-Wave Investigation Techniques. Soil Dynamics and Earthquake Engineering, 2006, 26(5): 395-403.

[67]

Xia J., Xu Y., Miller R. D., . Estimation of Elastic Moduli in a Compressible Gibson Half-Space by Inverting Rayleigh Wave Phase Velocity. Surveys in Geophysics, 2006, 27(1): 1-17.

[68]

Xia J., Xu Y., Miller R. D.. Generating Image of Dispersive Energy by Frequency Decomposition and Slant Stacking. Pure and Applied Geophysics, 2007, 164(5): 941-956.

[69]

Xia J., Nyquist J. E., Xu Y., . Feasibility of Detecting Near-Surface Feature with Rayleigh-Wave Diffraction. Journal of Applied Geophysics, 2007, 62(3): 244-253.

[70]

Xia J., Miller R. D., Xu Y.. Data-Resolution Matrix and Model-Resolution Matrix for Rayleigh-Wave Inversion Using a Damped Least-Square Method. Pure and Applied Geophysics, 2008, 165(7): 1227-1248.

[71]

Xia, J., Xu, Y., Miller, R. D., 2008b. Improvement and Assessment of a Damped Least-Square Solution of Rayleigh-Wave Inversion. Proceedings of the 2008 International Conference on Environmental and Engineering Geophysics (ICEEG), June 15–20, Wuhan, China. 20–28

[72]

Xu Y., Xia J., Miller R. D.. Quantitative Estimation of Minimum Offset for Multichannel Surface-Wave Survey with Actively Exciting Source. Journal of Applied Geophysics, 2006, 59(2): 117-125.

[73]

Xu Y., Xia J., Miller R. D.. Numerical Investigation of Implementation of Air-Earth Boundary by Acoustic-Elastic Boundary Approach. Geophysics, 2007, 72(5): SM147-SM153.

[74]

Xu Y., Xia J., Miller R. D.. Approximation to Cutoffs of Higher Modes of Rayleigh Waves for a Layered Earth Model. Pure and Applied Geophysics, 2009, 166(3): 339-351.

[75]

Yilmaz. Seismic Data Processing, 1987, Tulsa, OK: Society of Exploration Geophysicists 526

[76]

Yilmaz, Eser M., Berilgen M.. A Case Study of Seismic Zonation in Municipal Areas. The Leading Edge, 2006, 25(3): 319-330.

[77]

Zhang S. X., Chan L. S., Xia J.. The Selection of Field Acquisition Parameters for Dispersion Images from Multichannel Surface Wave Data. Pure and Applied Geophysics, 2004, 161: 185-201.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/