Hammer-impact SH-wave seismic reflection methods in neotectonic investigations: General observations and case histories from the Mississippi Embayment, U.S.A.

James B. Harris

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (3) : 513

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (3) : 513 DOI: 10.1007/s12583-009-0043-y
Article

Hammer-impact SH-wave seismic reflection methods in neotectonic investigations: General observations and case histories from the Mississippi Embayment, U.S.A.

Author information +
History +
PDF

Abstract

Shallow shear-wave seismic reflection imaging, using a sledgehammer and mass energy source and standard processing, has become increasingly common in mapping near-surface geologic features, especially in water-saturated, unconsolidated sediments. Tests of the method in the Mississippi Embayment region of the central United States show interpretable reflection arrivals in the depth range of <10 m to >100 m with the potential for increased resolution when compared with compressional-wave data. Shear-wave reflection profiles were used to help interpret the significance of neotectonic surface deformation at five sites in the Mississippi Embayment. The interpreted profiles show a range of shallow structural styles that include reverse faulting, fault propagation folding, and reactivated normal faulting, and provide crucial subsurface evidence in support of paleoseismologic trenching and shallow drilling.

Keywords

shear wave / seismic reflection / neotectonics

Cite this article

Download citation ▾
James B. Harris. Hammer-impact SH-wave seismic reflection methods in neotectonic investigations: General observations and case histories from the Mississippi Embayment, U.S.A.. Journal of Earth Science, 2009, 20(3): 513 DOI:10.1007/s12583-009-0043-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker, G. S., 1999. Processing Near-Surface Seismic-Reflection Data: A Primer. In: Young, R., ed., Society of Exploration Geophysicists, Course Notes Series No. 9, 77

[2]

Baldwin J. N., Barron A. D., Kelson K. I., . Preliminary Paleoseismic and Geophysical Investigation of the North Farrenburg Lineament: Primary Tectonic Deformation Associated with the New Madrid North Fault?. Seismological Research Letters, 2002, 73: 393-413.

[3]

Baldwin J. N., Harris J. B., van Arsdale R. B., . Constraints on the Location of the Late Quaternary Reelfoot and New Madrid North Faults in the Northern New Madrid Seismic Zone, Central United States. Seismological Research Letters, 2005, 76(6): 772-789.

[4]

Burke K., Dewey J. F.. Plume Generated Triple Junctions: Key Indicators in Applying Plate Tectonics to Old Rocks. Journal of Geology, 1973, 81: 406-433.

[5]

Cox R. T., Cherryhomes J., Harris J. B., . Paleoseismology of the Southeastern Reelfoot Rift in Western Tennessee, U.S.A., and Implications for Intraplate Fault Zone Evolution. Tectonics, 2006, 25: 17

[6]

Cox R. T., van Arsdale R. B.. Hotspot Origin of the Mississippi Embayment and Its Possible Impact on Contemporary Seismicity. Engineering Geology, 1997, 46: 201-216.

[7]

Cox R. T., van Arsdale R. B.. The Mississippi Embayment, North America: A First Order Continental Structure Generated by the Cretaceous Superplume Mantle Event. Journal of Geodynamics, 2002, 34(2): 163-176.

[8]

Cox R. T., van Arsdale R. B., Harris J. B., . Quaternary Faulting in the Southern Mississippi Embayment and Implications for Tectonics and Seismicity in an Intraplate Setting. Geological Society of America Bulletin, 2000, 112(11): 1724-1735.

[9]

Cox R. T., van Arsdale R. B., Harris J. B., . Neotectonics of the Southeastern Reelfoot Rift Zone Margin, Central United States, and Implications for Regional Strain Accommodation. Geology, 2001, 29(5): 419-422.

[10]

Ervin C. P., McGinnis L. D.. Reelfoot Rift: Reactivated Precursor to the Mississippi Embayment. Bulletin, Geological Society of America, 1975, 86(9): 1287-1295.

[11]

Eslick R., Tsoflias G., Steeples D.. Field Investigations of Love Waves in Near-Surface Seismology. Geophysics, 2008, 73(3): G1-G6.

[12]

Evans R.. Effects of the Free Surface on Shear Wavetrains. Geophysical Journal, Royal Astronomical Society, 1984, 76: 165-172.

[13]

Fisk H. N.. Geological Investigation of the Alluvial Valley of the Lower Mississippi River, 1944, Vicksburg, Mississippi: Mississippi River Commision 78

[14]

Goforth T., Hayward C.. Seismic Reflection Investigations of a Bedrock Surface Buried under Alluvium. Geophysics, 1992, 57: 1217-1227.

[15]

Harris J. B.. Shear-Wave Splitting in Quaternary Sediments: Neotectonic Implications in the Central New Madrid Seismic Zone. Geophysics, 1996, 61: 1871-1882.

[16]

Harris, J. B., Berman, S. A., Beard, W. C., et al., 1998. Shallow Seismic Reflection Investigations of Neotectonic Activity in the Lower Mississippi Valley. 68th Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts. 848–851

[17]

Harris, J. B., Miller, R. D., Xia, J., et al., 2000. Near-Surface Shear Wave Reflection Surveys in the Fraser River Delta, B.C., Canada. 70th Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts. 1327–1330

[18]

Harris, J. B., Sorrells, J. L., 2006. Shear-Wave Seismic Reflection Images of the Big Creek Fault Zone near Helena, Arkansas. 76th Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts. 1500–1505

[19]

Hasbrouck W. P.. Four Shallow-Depth, Shear-Wave Feasibility Studies. Geophysics, 1991, 56: 1875-1885.

[20]

Herrmann R. B., Canas J. A.. Focal Mechanism Studies in the New Madrid Seismic Zone. Bulletin, Seismological Society of America, 1978, 68(4): 1095-1102.

[21]

Johnston A. C., Schweig E. S.. The Enigma of the New Madrid Earthquakes of 1811–1812. Annual Review of Earth and Planetary Sciences, 1996, 24: 339-384.

[22]

Kelson K. I., Simpson G. D., van Arsdale R. B., . Multiple Late Holocene Earthquakes along the Reelfoot Fault, Central New Madrid Seismic Zone. Journal of Geophysical Research, 1996, 101(B3): 6151-6170.

[23]

Krinitzsky E. L.. Geological Investigation of Faulting in the Lower Mississippi Valley. U. S. Army Corps of Engineers Waterways Experiment Station Technical Memorandum, 1950, 3–311: 50

[24]

Miller, R. D., Xia, J., Park, C. B., 2001. Love Waves: A Menace to Shallow Shear Wave Reflection Surveying. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts. 1377–1380

[25]

Odum J. K., Stephenson W. J., Williams R. A., . Near-Surface Faulting and Deformation Overlying the Commerce Geophysical Lineament in Southern Illinois. Seismological Research Letters, 2002, 73(5): 687-697.

[26]

Pugin A. J. M., Larson T. H., Sargent S. L., . Near-Surface Mapping Using SH-Wave and P-Wave Seismic Landstreamer Data Acquisition in Illinois, U.S.. The Leading Edge, 2004, 23(7): 677-682.

[27]

Pullan, S. E., Hunter, J. A., Neave, K. G., 1990. Shallow Shear-Wave Reflection Tests. 60th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts. 380–382

[28]

Schweig E. S. III, Shen F., Kanter L. R., . Shallow Seismic Reflection Survey of the Bootheel Lineament Area, Southeastern Missouri. Seismological Research Letters, 1992, 63: 285-295.

[29]

Sexton J. L., Jones P. B.. Evidence for Recurrent Faulting in the New Madrid Seismic Zone from Mini-Sosie High-Resolution Reflection Data. Geophysics, 1986, 51(3): 1760-1788.

[30]

Smith, F. L., Saucier, R. T., 1971. Geological Investigation of the Western Lowlands Area, Lower Mississippi Valley. U.S. Army Corps of Engineers Waterways Experiment Station Technical Report S-71-5, 44 Plates

[31]

Steeples D. W., Miller R. D.. Avoiding Pitfalls in Shallow Seismic Reflection Surveys. Geophysics, 1998, 63(4): 1213-1224.

[32]

Steeples, D. W., Miller, R. D., 1990. Seismic-Reflection Methods Applied to Engineering, Environmental, and Groundwater Problems. In: Ward, S. H., ed., Society of Exploration Geophysicists, Investigations in Geophysics. Review and Tutorial, 1(5): 1–30

[33]

Stephenson W. J., Odum J. K., Williams R. A., . Deformation and Quaternary Faulting in Southeast Missouri across the Commerce Geophysical Lineament. Bulletin, Seismological Society of America, 1999, 89: 140-155.

[34]

Suyama, K., Imai, T., Ohtomo, H., et al., 1987. Delineation of Structures in Alluvium and Diluvium Using SH-Wave Reflection and VSP Methods. In: Danbom, S. H., Domenico, S. N., eds., Shear-Wave Exploration. Society of Exploration Geophysicists. Geophysical Developments, 1: 165–179

[35]

van Arsdale R. B., Kelson K. I., Lumsden C. H.. Northern Extension of the Tennessee Reelfoot Scarp into Kentucky and Missouri. Seismological Research Letters, 1995, 66(5): 57-62.

[36]

Widess M. B.. How Thin is a Thin Bed?. Geophysics, 1973, 38: 1176-1180.

[37]

Williams R. A., Luzetti E. A., Carver D. L.. High-Resolution Seismic Imaging of Quaternary Faulting on the Crittenden County Fault Zone, New Madrid Seismic Zone, Northeastern Arkansas. Seismological Research Letters, 1995, 66: 42-57.

[38]

Woolery E. W., Street R. L., Wang Z., . Neotectonic Structure in the Central New Madrid Seismic Zone: Evidence from Multimode Seismic-Reflection Data. Seismological Research Letters, 1999, 70: 554-576.

[39]

Woolery E. W., Street R., Wang Z., . Near-Surface Deformation in the New Madrid Seismic Zone as Imaged by High-Resolution SH-Wave Seismic Methods. Geophysical Research Letters, 1993, 20(15): 1615-1618.

[40]

Woolery E. W., Wang Z., Street R. L., . A P- and SH-Wave Seismic Reflection Investigation of the Kentucky Bend Scarp in the New Madrid Seismic Zone. Seismological Research Letters, 1996, 67: 67-74.

[41]

Young R. A., Hoyos J.. Near-Surface, SH-Wave Surveys in Unconsolidated, Alluvial Sediments. The Leading Edge, 2001, 20(9): 936-948.

[42]

Zoback M. D.. Recurrent Faulting in the Vicinity of Reelfoot Lake, Northwestern Tennessee. Bulletin, Geological Society of America, 1979, 90: 1019-1024.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/