Continental dynamics in High Tibetan plateau: Normal faulting type earthquake activities and mechanisms

Jiren Xu , Zhixin Zhao

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (2) : 484

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (2) : 484 DOI: 10.1007/s12583-009-0040-1
Article

Continental dynamics in High Tibetan plateau: Normal faulting type earthquake activities and mechanisms

Author information +
History +
PDF

Abstract

Various earthquake fault types were analyzed for this study on the crust movement in the high region of the Tibetan plateau by analyzing mechanism solutions and stress fields. The results show that a lot of normal faulting type earthquakes are concentrated in the central High Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of normal faulting earthquakes are almost in an N-S direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extensions probably are an eastward extensional motion, being mainly a tectonic active regime in the plateau altitudes. The tensional stress in the E-W or NWW-SEE direction predominates earthquake occurrences in the normal event region of the central plateau. The eastward extensional motion in the high Tibetan plateau is attributable to the gravitational collapse of the high plateau and the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. Extensional motions from the relaxation of the topography and/or gravitational collapse in the high plateau hardly occurred along the N-S direction. The obstruction for the plateau to move eastward is rather weak.

Keywords

normal faulting type earthquake / focal mechanism solution / eastward extensional motion / stress field / gravitational collapse

Cite this article

Download citation ▾
Jiren Xu, Zhixin Zhao. Continental dynamics in High Tibetan plateau: Normal faulting type earthquake activities and mechanisms. Journal of Earth Science, 2009, 20(2): 484 DOI:10.1007/s12583-009-0040-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armijo R., Tapponnier P., Mercier J. L., . Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. J. Geophys. Res., 1986, 91: 13803-13872.

[2]

Avouac J. P., Tapponnier P.. Kinematic Model of Active Deformation in Central Asia. Geophys. Res. Lett., 1993, 20(10): 895-898.

[3]

Blisniuk P. M., Hacker B. R., Glodny J., . Normal Faulting in Central Tibet since at Least 13.5 Myr Ago. Nature, 2001, 412(6847): 628-632.

[4]

Bourjot L., Romanowicz B.. Crust and Upper Mantle Tomography in Tibet Using Surface Waves. Geophys. Res. Lett., 1992, 19(9): 881-884.

[5]

Chen Z., Burchfiel B. C., Liu R., . Global Positioning System Measurements from Eastern Tibet and Their Implications for India/Eurasia Intercontinental Deformation. J. Geophys. Res., 2000, 105(B7): 16215-16227.

[6]

Deway J. F., Bird J. M.. Mountain Belts and New Global Tectonics. J. Geophys. Res., 1970, 75: 2625-2647.

[7]

Dewey J. F.. Extensional Collapse of Orogens. Tectonics, 1988, 7(6): 1123-1139.

[8]

Hancock, P. L., Bevan, T. G., 1987. Brittle Modes of Foreland Extension. In: Coward, M. P., Dewey, J. F., Hancock, P. L., eds., Continental Extensional Tectonics. Geological Society Special Publications, 28: 127–137

[9]

Han T. L.. Relationship of the Active Structural System to Geothermal Activity in Southern Xizang (Tibet), in Himalayan Geology, 1981, Beijing: Geological Publishing House 45-58.

[10]

Klemperer S. L., Law R. D., Searle M. P., Godin L.. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol. Soc. Lond. Special Publications, 2006, 268: 39-70.

[11]

Lave J., Avouac J. P., Lacassin R., . Seismic Anisotropy beneath Tibet—Evidence for Eastward Extrusion of the Tibetan Lithosphere. Earth Planet. Sci. Lett., 1997, 140(1–4): 83-96.

[12]

Li Y. L., Wang C. S., Yi H. S., . Characteristics of the Shuanghu Graben and Cenozoic Extension in the Northern Tibet. Science in China (Series D), 2001, 44: 284-291.

[13]

Molnar P., Tapponnier P.. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 1975, 189(4201): 419-426.

[14]

Molnar P., Tapponnier P.. Active Tectonics of Tibet. J. Geophys. Res., 1978, 83(B11): 5361-5375.

[15]

Molnar P.. The Geologic Evolution of the Tibetan Plateau. Ame. Sci., 1989, 77(4): 350-360.

[16]

Molnar P.. A Review of the Seismicity and the Rates of Active Underthrusting and Deformation at the Himalaya. Journal of Himalayan Geology, 1990, 1: 131-154.

[17]

Molnar P., England P., Martinod J.. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 1993, 31(4): 357-396.

[18]

Ni J., York J. E.. Late Cenozoic Tectonics of the Tibetan Plateau. J. Geophys. Res., 1978, 83: 5377-5384.

[19]

Robert S., Yeats K. S., Clarence R. A.. The Geology of Earthquakes, 1997, Oxford: Oxford University Press 256-257.

[20]

Tapponnier P.. The Ailao Shan-Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 1990, 343(6257): 431-437.

[21]

Wu H. Z., Ye P. S., Hu D. G.. Evolvement for Crustal Deformation and Tectonic Physiognomy, 2003, Beijing: Geological Publishing House 1-292.

[22]

Xu J. R., Zhao Z. X., Ishikawa Y., . Properties of the Stress Field in and around West China Derived from Earthquake Mechanism Solutions. Bulletin of the Disaster Prevention Research Institutey, 1988, 38(2): 49-78.

[23]

Xu J. R., Yoshiteru K.. Geometry of Slab, Intraslab Stress Field and Its Tectonic Implication in the Nankai Trough, Japan. Earth, Planes and Space, 2002, 54(7): 733-742.

[24]

Xu J. R., Oike K.. Stress Characteristics in the Southern Segment of the North-South Seismic Belt. Acta Sesimologica Sinica, 1995, 17: 31-40.

[25]

Xu J. R., Zhao Z. X., Kono Y., . Regional Characteristics of Stress Field and Its Dynamics in and around the Nankai Trough, Japan. Chinese Journal of Geophysics, 2003, 46(4): 488-494.

[26]

Yeats R. S., Lillie R. J.. Contemporary Tectonics of the Himalayan Frontal Fault System: Folds, Blind Thrusts, and the 1905 Kangra Earthquake. J. Structural Geology, 1991, 13(2): 215-225.

[27]

Zhang Y., Tanimoto T.. High Resolution Global Upper Mantle Structure and Plate Tectonics. J. Geophys. Res., 1993, 98(B6): 9793-9823.

[28]

Zhang, Y., 2000. Three Dimensional Upper Mantle Structure beneath East Asia and Its Tectonic Implications. In: Martin, E. J. F., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series, 27:11–23

[29]

Zhao Z. X., Oike K., Matsumura K., . Stress Field in the Continental Part of China Derived from Temporal Variations of Seismic Activity. Tectonophysics, 1990, 178(2–4): 357-372.

[30]

Zhao Z. X., Xu J. R.. Compressive Tectonics around the Tibetan Plateau Edges. Journal of Earth Science, 2009, 20(2): 477-483.

[31]

Zhou R., Grand S. P., Tajima F., . High Velocity Zone beneath the Southern Tibetan Plateau from P-Wave Differential Travel Time Data. Geophys. Res. Lett., 1996, 23(1): 25-28.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/