Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications

Junling Pei , Zhiming Sun , Xisheng Wang , Yue Zhao , Xiaohong Ge , Xinzhuan Guo , Haibing Li , Jialiang Si

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (2) : 430 -437.

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (2) : 430 -437. DOI: 10.1007/s12583-009-0035-y
Article

Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications

Author information +
History +
PDF

Abstract

Geometry analysis of the Hongsanhan (红三旱) Section in the northwestern Qaidam basin illustrates the typical growth strata in the Xiaganchaigou (下干柴沟) Formation. The age and sedi-mentation rates of the Xiaganchaigou and the Shangganchaigou (上干柴沟) formations were determined by the high-resolution magnetostratigraphy. This result shows that the growth strata began to form at ca. 38.0 Ma and increased sedimentation rates occurred at ca. 37.0 Ma. The uplift of the Tibetan plateau before the Eocene-Oligocene boundary is confirmed, which enables us to better understand the relationship between climatic changes and the tectonic uplift. This uplift event could have resulted in the regional drying by blocking the moisture and contributed to the Eocene-Oligocene boundary global cooling event due to the declining atmospheric CO2 concentrations by increased weathering of the mountains.

Keywords

Qaidam basin / Eocene-Oligocene boundary / growth stratum / magnetostratigraphy

Cite this article

Download citation ▾
Junling Pei, Zhiming Sun, Xisheng Wang, Yue Zhao, Xiaohong Ge, Xinzhuan Guo, Haibing Li, Jialiang Si. Evidence for Tibetan plateau uplift in Qaidam basin before Eocene-Oligocene boundary and its climatic implications. Journal of Earth Science, 2009, 20(2): 430-437 DOI:10.1007/s12583-009-0035-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barrett P.. Cooling a Continent. Nature, 2003, 421(6920): 221-223.

[2]

Bowen G. J.. When the World Turned Cold. Nature, 2007, 445(7128): 607-608.

[3]

Cande S. C., Kent D. V.. Revised Calibration of the Geomagnetic Polarity Timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 1995, 100(B4): 6093-6095.

[4]

Chen Z. L., Zhang Y. Q., Wang X. F., . Fission Track Dating of Apatite Constrains on Cenozoic Uplift of the Altyn Tagh Mountain. Acta Geoscientia Sinica, 2001, 22(5): 413-418.

[5]

Dai, S. X., Fang, G., Dupont-Nivet, G., et al., 2006. Magnetostratigraphy of Cenozoic Sediments from the Xining Basin: Tectonic Implications for the Northeastern Tibetan Plateau. J. Geophys. Res., 111: B11102. DOI: 10.1029/2005JB004187

[6]

Deconto R. M., Pollard D.. Rapid Cenozoic Glaciation of Antarctic Induced by Declining Atmospheric CO2. Nature, 2003, 421(6920): 245-249.

[7]

Dupont-Nivet G., Hoorn C., Konert M.. Tibetan Uplift Prior to the Eocene-Oligocene Climate Transition: Evidence from Pollen Analysis of the Xining Basin. Geology, 2008, 36(12): 987-990.

[8]

Dupont-Nivet G., Krijgsman W., Langereis C. G., . Tibetan Plateau Aridification Linked to Global Cooling at the Eocene-Oligocene Transition. Nature, 2007, 445: 635-638.

[9]

Exon N.. Drilling Reveals Climatic Consequences of Tasmanian Gateway Opening. EOS, 2002, 83(23): 253-259.

[10]

Fang X. M., Zhang W. L., Meng Q. Q., . High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 2007, 258(1–2): 293-306.

[11]

Ge X. H., Liu Y. J., Ren S. M.. Uplift Dynamics of Qinghai-Tibet Plateau and Altyn Fault. Geology in China, 2002, 29(4): 346-350.

[12]

Guo X. Z., Liu Y. J., Ge X. H., . The Analyses of Cenozoic Sandstone Component in Hongsanhan No. 1 Area and Its Tectonic Implications. Journal of Jilin University, 2006, 36(2): 194-201.

[13]

Kerrick D. M., Caldeira K.. Was the Himalayan Orogen a Climatically Significant Coupled Source and Sink for Atmospheric CO2 during the Cenozoic?. Earth and Planetary Science Letters, 1999, 173(3): 195-203.

[14]

Li H. B., Yang J. S., Shi R. D., . Determination of the Altyn Tagh Strike-Slip Fault Basin and Its Relationship with Mountains. Chinese Science Bulletin, 2002, 47(7): 572-577.

[15]

Li H. B., Yang J. S., Xu Z. Q., . The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau. Earth Science Frontiers, 2006, 13(4): 59-79.

[16]

Liu Y. J., Genser J., Ge X. H., . 40Ar/39Ar Age Evidence for Altyn Fault Tectonic Activities in Western China. Chinese Science Bulletin, 2003, 48(18): 2024-2030.

[17]

Merico A., Tyrrell T., Wilson P. A.. Eocene/Oligocene Ocean De-acidification Linked to Antarctic Glaciation by Sea-Level Fall. Nature, 2008, 452: 979-983.

[18]

Meyer B., Tapponnier P., Bourjot L., . Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strikeslip Controlled Growth of the Tibet Plateau. Geophys. J. Int., 1998, 135: 1-47.

[19]

Molnar P., Tapponnier P.. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 1975, 189(4201): 419-426.

[20]

Pearson P. N., Mcmillan I. K., Bridget S., . Extinction and Environmental Change across the Eocene-Oligocene Boundary in Tanzania. Geology, 2008, 36(2): 179-182.

[21]

Pei J. L., Sun Z. M., Li H. B., . Paleocurrent Direction of the Late Cenozoic Sedimentary Sequence of the Tibetan Plateau Northwestern Margin Constrained by AMS and Its Tectonic Implications. Acta Petrologica Sinica, 2008, 24(07): 1613-1620.

[22]

Pei J. L., Sun Z. M., Zhao Y., . The Eocene- Oligocene Boundary Global Cooling Event Recorded on the Qaidam Basin. Geological Bulletin of China, 2007, 26(10): 1380-1384.

[23]

Qinghai Bureau of GeologyMineral Resources Regional Geology of the Qinghai Province, 1991, Beijing: Geol. Publ. House 662

[24]

Rowley D. B., Currie B. S.. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 2006, 439(7077): 677-681.

[25]

Scher H. D., Martin E. E.. Timing and Climatic Consequences of the Opening of Drake Passage. Science, 2006, 312(5772): 428-430.

[26]

Sun J. M., Liu D. S.. The Age of the Taklimakan Desert. Science, 2006, 312(5780): 1621

[27]

Sun Z. M., Yang Z. Y., Pei J. L., . Magnetostchatigraphy of Paleogene Sediments from Northern Qaidam Basin, China: Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau. Earth Planet. Sci. Lett., 2005, 237(3–4): 635-646.

[28]

Tapponnier P., Xu Z. Q., Roger F., . Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677.

[29]

Tuo S. T., Liu Z. F., Zhao Q. H., . The Earliest Oligocene Glacial Maximum: Records from ODP Site 1265, South Atlantic. Earth Science—Journal of China University of Geosciences, 2006, 31(2): 151-158.

[30]

Vonhot H. B., Smit J., Brinkhuis H., . Global Cooling Accelerated by Early Late Eocene Impacts. Geology, 2000, 28(8): 687-690.

[31]

Wang F., Lo C., Li Q., . Onset Timing of Significant Unroofing around Qaidam Basin, Northern Tibet, China: Constraints from 40Ar/39Ar and FT Thermochronology on Granitoids. J. Asian Earth Sci., 2004, 24(1): 59-69.

[32]

Wang J., Wang Y. J., Liu Z. C., . Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1–2): 37-47.

[33]

Wang X. M., Wang M. Z., Zhang X. Q.. Pollen Assemblages and Paleoclimatic Features of the Late Eocene to the Early Oligocene in China. Earth Science—Journal of China University of Geosciences, 2005, 30(3): 309-316.

[34]

Yin A., Harrison T., Murphy M., . Tertiary Deformation History of Southeastern and Southwestern Tibet during the Indo-Asian Collision. Geol. Soc. Amer. Bull., 1999, 111: 1644-1664.

[35]

Yin A., Rumelhart P. E., Butler R., . Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 2002, 114(10): 1257-1295.

[36]

Zachos J. C., Kump L. R.. Carbon Cycle Feedbacks and the Initiation of Antarctic Glaciation in the Earliest Oligocene. Global and Planetary Change, 2005, 47(1): 51-66.

[37]

Zachos J. C., Pagani M., Sloan L., . Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 2001, 292(5517): 686-693.

[38]

Zhang Z., Wang H., Guo Z., . What Triggers the Transition of Palaeoenvironmental Patterns in China, the Tibetan Plateau Uplift or the Paratethys Sea Retreat?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3–4): 317-331.

[39]

Zhou J. X., Xu F. Y., Wang T. C., . Cenozoic Deformation History of the Qaidam Basin, NW China: Results from Cross-Section Restoration and Implications for Qinghai-Tibet Plateau Tectonics. Earth and Planetary Science Letters, 2006, 243(1–2): 195-210.

[40]

Zhu L. D., Wang C. S., Zheng H. B., . Tectonic and Sedimentary Evolution of Basins in the Northeast of Qinghai-Tibet Plateau and Their Implication for the Northward Growth of the Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 49-60.

[41]

Zhu L., Owens T., Randall G.. Lateral Variation in Crustal Structure of the Northern Tibetan Plateau Inferred from Teleseismic Receiver Functions. Seismol. Soc. Am. Bull., 1995, 85: 1531-1540.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/