SiO2 solubility in rutile at high temperature and high pressure

Yufeng Ren , Yingwei Fei , Jingsui Yang , Wenji Bai

Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (2) : 274 -283.

PDF
Journal of Earth Science ›› 2009, Vol. 20 ›› Issue (2) : 274 -283. DOI: 10.1007/s12583-009-0025-0
Article

SiO2 solubility in rutile at high temperature and high pressure

Author information +
History +
PDF

Abstract

Silicon-bearing rutile has been found in chromitite from the Luobusa (罗布莎) ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2 takes a rutile structure with Si in 6-fold coordination. Thus, high pressures may enhance its solubility in rutile because of possible isovalent exchange in the octahedral site. In this study, we report new experimental results on SiO2 solubility in rutile up to 23 GPa and 2 000 °C. Starting materials were mixtures of powdered pure rutile and pure quartz, with compositions of (Ti0.5Si0.5)O2, (Ti0.93Si0.07)O2, and (Ti0.75Si0.25)O2. The mixtures were loaded into either platinum capsules (for a 10/5 assembly) or rhenium capsules (for an 8/3 assembly). The experiments were carried out using multi-anvil high-pressure apparatus with a rhenium resistance heater. Sample temperatures were measured with a W5%Re-W26%Re thermocouple and were controlled within ±1 °C of the set temperature. TiO2-rich and SiO2-rich phases were produced in all the quenched samples. Microprobe analyses of the phases show that the solubility of SiO2 in rutile increases with increasing pressure, from 1.5 wt.% SiO2 at 10 GPa to 3.8 wt.% SiO2 at 23 GPa at a temperature of 1 800 °C. The solubility also increases with increasing temperature from 0.5 wt.% SiO2 at 1 500° to 4.5 wt.% SiO2 at 2 000° at a pressure of 18 GPa. On the other hand, the solubility of TiO2 in coesite or stishovite is very limited, with an average of 0.6 wt.% TiO2 over the experimental P-T ranges. Temperature has a much larger effect on the solubility of SiO2 in rutile than pressure. At high pressure, the melting point of SiO2 is definitely higher than that of TiO2 and the eutectic point moves towards SiO2 in the TiO2-SiO2 system. Lower oxygen fugacity decreases the solubility of SiO2 in rutile, whereas water has little effect on the solubility. Our experimental data are extremely useful for determining the depth of origin of the SiO2-bearing rutile found in nature.

Keywords

rutile / stishovite / coesite / polymorph / high temperature and high pressure / experiment

Cite this article

Download citation ▾
Yufeng Ren, Yingwei Fei, Jingsui Yang, Wenji Bai. SiO2 solubility in rutile at high temperature and high pressure. Journal of Earth Science, 2009, 20(2): 274-283 DOI:10.1007/s12583-009-0025-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akaogi M., Ito E., Navrotsky A.. Olivine-Modified Spinel-Spinel Transitions in the System Mg2SiO4-Fe2SiO4: Calorimetric Measurements, Thermochemical Calculation, and Geophysical Application. J. Geophys. Res., 1989, 94(B11): 15671-15685.

[2]

Angle R. J.. Transformation of Five Folded-Coordinated Silicon to Octahedral Silicon in Calcium Silicate, CaSi2O5. American Mineralogist, 1997, 82: 836-839.

[3]

Bai W. J., Robinson P. T., Fang Q. S., . The PGE and Base-Metal Alloys in the Podiform Chromitites of the Luobusa Ophiolite, Southern Tibet. The Canadian Mineralogist, 2000, 38: 585-598.

[4]

Bai W. J., Tao S. F., Shi R. D., . A New Intergrowth Consisting of FeO and SiO2 Phases from Lower Mantle. Continental Dynamics, 2001, 6(2): 1-7.

[5]

Bertka C. M., Fei Y. W.. Mineralogy of the Martian Interior up to Core-Mantle Boundary Pressures. J. Geophys. Res., 1997, 102(B3): 5251-5264.

[6]

Circone S., Agee C. B.. Effect of Pressure on Cation Partitioning between Immiscible Liquids in the System TiO2-SiO2. Geochimica et Cosmochimica Acta, 1995, 59(5): 895-907.

[7]

DeVries R. C., Roy R., Osborn E. F.. The System TiO2-SiO2. Transactions of the British Ceramic Society, 1954, 53(9): 525-540.

[8]

Dobrzhinetskaya L., Bizgukiv K. N., Green H. W.. The Solubility of TiO2 in Olivine: Implications for the Mantle Wedge Environment. Chemical Geology, 1999, 160(4): 357-370.

[9]

Dubrovinskaia N. A., Dubrovinsky L. S., Ahuja R., . Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph. Phys. Rev. Lett., 2001, 87(27): 275501-275504.

[10]

Endo S., Sato H., Tang J., . Synon Y., Manghnani M. H., . High Pressure Research: Application to Earth and Planetary Sciences. Terra, 1992, Tokyo: Scientific Publishing Company 457-461.

[11]

Fang Q. S., Bai W. J.. The Discovery of Alpine-Type Diamond-Bearing Ultrabasic Intrusions in Tibet. Geological Review, 1981, 27: 455-457.

[12]

Fei Y. W., Bertka C. M.. Phase Transitions in the Earth’s Mantle and Mantle Mineralogy. Geochemical Society Special Publication, 1999, 6: 189-207.

[13]

Goresy A. E., Chen M., Gillet P., . A Natural Shock-Induced Dense Polymorph of Rutile with α-PbO2 Structure in the Suevite from the Ries Crater in Germany. Earth and Planetary Science Letters, 2001, 192(4): 485-495.

[14]

Goresy A. E., Chen M., Dubrovinsky L., . An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater. Science, 2001, 293(5534): 1467-1470.

[15]

Hermann J., O’Neill H. S. C., Berry A. J.. Titanium Solubility in Olivine in the System TiO2-MgO-SiO2: No Evidence for an Ultra-deep Origin of Ti-Bearing Olivine. Contributions to Mineralogy and Petrology, 2004, 148(6): 746-760.

[16]

Hwang S. L., Shen P. Y., Chu H., . Nanometer-Size α-PbO2-Type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism. Science, 2000, 288(5464): 321-324.

[17]

Ito E., Takahashi E.. Post-Spinel Transformations in the System Mg2SiO4-Fe2SiO4 and Some Geophysical Implications. J. Geophys. Res., 1989, 94(8): 10637-10646.

[18]

Jackson J. C., Horton J. W., Chou I. M., . A Shock-Induced Polymorph of Anatase and Rutile from the Chesapeake Bay Impact Structure, Virginia, USA. American Mineralogist, 2006, 91: 604-608.

[19]

Kaufman L.. Physica B+C. Amsterdam, 1988, 150(1–2): 99-114.

[20]

Knoche R., Angel R. J., Seifert F., . Complete Substitution of Si for Ti in Titanite Ca(Ti1−xSix)VISiIVO5. American Mineralogists, 1998, 83: 1168-1175.

[21]

Nazzareni S., Molin G., Skogby H., . Crystal Chemistry of Ti3+-Ti4+-Bearing Synthetic Diopsides. Eur. J. Mineral., 2004, 16: 443-449.

[22]

Ogasawara Y., Fukasawa K., Maruyama S.. Coesite Exsolution from Supersilicic Titanite in UHP Marble from the Kokchetav Massif, Northern Kazakhstan. American Mineralogist, 2002, 87: 454-461.

[23]

Stebbins J. F.. Nuclear Magnetic Resonance Spectroscopy of Geological Materials. MRS Bulletin, 1992, 17(5): )45-52.

[24]

Withers A. C., Essene E. J., Zhang Y.. Rutile/TiO2 II Phase Equilibria. Contributions to Mineralogy and Petrology, 2003, 145: 199-204.

[25]

Yang F. Y., Kang Z. Q., Liu S. C.. A New Octahedral Pseudomorph of Lizardite and Its Origin. Acta Mineralogica Sinica, 1981, 1: 52-54.

[26]

Yang J. S., Bai W. J., Fang Q. S., . Silicon-Rutile: An Ultrahigh Pressure (UHP) Mineral from an Ophiolite. Progress in Natural Science, 2003, 13(7): 528-531.

[27]

Yang J. S., Dobrzhinetskaya L., Bai W. J., . Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. Geology, 2007, 35(10): 875-878.

[28]

Zhang R. Y., Zhai S. M., Fei Y. W., . Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure: The Significance of Exsolved Rutile in Garnet. Earth and Planetary Science Letters, 2003, 216(4): 519-601.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/