Eocene and modern entomofauna differ—a Cretaceous-like larva in Rovno amber

Joachim T. Haug , Simon Linhart , Viktor Baranov , Carolin Haug

Insect Science ›› 2025, Vol. 32 ›› Issue (2) : 712 -718.

PDF
Insect Science ›› 2025, Vol. 32 ›› Issue (2) : 712 -718. DOI: 10.1111/1744-7917.13410
SHORT COMMUNICATION

Eocene and modern entomofauna differ—a Cretaceous-like larva in Rovno amber

Author information +
History +
PDF

Cite this article

Download citation ▾
Joachim T. Haug, Simon Linhart, Viktor Baranov, Carolin Haug. Eocene and modern entomofauna differ—a Cretaceous-like larva in Rovno amber. Insect Science, 2025, 32(2): 712-718 DOI:10.1111/1744-7917.13410

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, P.A. (1959) Neuroptera Myrmeleontidae and Chrysopidae. Insects of Micronesia, 8, 13-33.

[2]

Agterhuis, T. Ziegler, M. de Winter, N.J. and Lourens, L.J. (2022) Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry. Communications Earth & Environment, 3, 39.

[3]

Badano, D. Engel, M.S. Basso, A. Wang, B. and Cerretti, P. (2018) Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications, 9, 3257.

[4]

Badano, D. Fratini, M. Maugeri, L. Palermo, F. Pieroni, N. Cedola, A. et al. (2021) X-ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology, 46, 672-684.

[5]

Baranov, V. Andersen, T. and Perkovsky, E.E. (2015) Orthoclads from Eocene amber from Sakhalin (Diptera: Chironomidae, Orthocladiinae). Insect Systematic and Evolution, 46, 359-378.

[6]

Baranov, V. Hoffeins, C. Hoffeins, H.-W. and Haug, J.T. (2019a) Reaching across the ocean of time: a midge morphotype from the Cretaceous of Gondwana found in the Eocene Baltic amber. Palaeontologia Electronica, 22, 1-17. https://doi.org/10.26879/955.

[7]

Baranov, V.A. Schädel, M. and Haug, J.T. (2019b) Fly palaeo-evo-devo: immature stages of bibionomorphan dipterans in Baltic and Bitterfeld amber. PeerJ, 7, e7843.

[8]

Braig, F. Popp, T. Zippel, A. Haug, G.T. Linhart, S. Müller, P. et al. (2023) The diversity of larvae with multi-toothed stylets from about 100 million years ago illuminates the early diversification of antlion-like lacewings. Diversity, 15, 1219.

[9]

Brasero, N. Nel, A. and Michez, D. (2009) Insects from the Early Eocene amber of Oise (France): diversity and palaeontological significance. Denisia, 26, 41-52.

[10]

Brauer, F. (1851) Beschreibung und Beobachtung der österreichischen Arten der Gattung Chrysopa. Naturwissenschaftliche Abhandlungen, Gesammelt Und Durch Subscription Herausgegeben Von Wilhelm Haidinger, 4, 1-12.

[11]

Brauer, F.M. (1867) Larve von Hypochrysa nobilis Heyd. Verhandlungen Der Zoologisch-Botanischen Gesellschaft in Wien, 17, 27-30.

[12]

Bukejs, A. Biondi, M. and Alekseev, V.I. (2016) New records and species of Crepidodera Chevrolat (Coleoptera: Chrysomelidae) in Eocene European amber, with a brief review of described fossil beetles from Bitterfeld amber. Zootaxa, 4193, 390-400.

[13]

Bukejs, A. Háva, J. and Alekseev, V.I. (2020) A new fossil species of Attagenus Latreille (Coleoptera: Dermestidae) in Rovno and Baltic ambers, with a brief review of known fossil beetles from the Rovno amber Lagerstätte. Fossil Record, 23, 95-104.

[14]

Cockerell, T.D. (1920) Eocene insects from the Rocky Mountains. Proceedings of the United States National Museum, 57, 233-260.

[15]

Díaz-Aranda, L. and Monserrat, V.J. (1996) On the larval stages of genus Suarius Navás 1914 in Europe Neuroptera Chrysopidae. Deutsche Entomologische Zeitschrift, 43, 89-97.

[16]

Doitteau, G. and Nel, A. (2007) Chironomid midges from early Eocene amber of France (Diptera: Chironomidae). Zootaxa, 1404, 1-66.

[17]

Dunlop, J.A. Kotthoff, U. Hammel, J.U. Ahrens, J. and Harms, D. (2018) Arachnids in Bitterfeld amber: a unique fauna of fossils from the heart of Europe or simply old friends? Evolutionary Systematics, 2, 31-44.

[18]

Dunlop, J.A. Marusik, Y. and Vlaskin, A.P. (2019) Comparing arachnids in Rovno amber with the Baltic and Bitterfeld deposits. Paleontological Journal, 53, 1074-1083.

[19]

Engel, M.S. Ortega-Blanco, J. Nascimbene, P. and Singh, H. (2013) The bees of Early Eocene Cambay amber (Hymenoptera: Apidae). Journal of Melittology, 25, 41651.

[20]

Froggatt, W.W. (1907) Australian Insects. William Brooks & Company, Sydney, p. 450.

[21]

Gorochov, A.V. (2007) New and little known orthopteroid insects (Polyneoptera) from fossil resins: communication 2. Paleontological Journal, 41, 156-166.

[22]

Greenwalt, D.E. and Vidlička, Ľ. (2015) Latiblattella avita sp. nov. (Blattaria: Ectobiidae) from the Eocene Kishenehn formation, Montana, USA. Palaeontologia Electronica, 18.1. 16A, 1-9. https://doi.org/10.26879/511.

[23]

Gröhn, C. (2015) Einschlüsse im baltischen Bernstein. Wachholtz Verlag—Murmann Publishers, Kiel.

[24]

Hassenbach, C. Buchner, L. Haug, G.T. Haug, C. and Haug, J.T. (2023) An expanded view on the morphological diversity of long-nosed antlion larvae further supports a decline of silky lacewings in the past 100 million years. Insects, 14, 170.

[25]

Haug, C. Braig, F. and Haug, J.T. (2023a) Quantitative analysis of lacewing larvae over more than 100 million years reveals a complex pattern of loss of morphological diversity. Scientific Reports, 13, 6127.

[26]

Haug, C. Haug, G.T. Kiesmüller, C. and Haug, J.T. (2023b) Convergent evolution and convergent loss in the grasping structures of immature earwigs and aphidlion-like larvae as demonstrated by about 100-million-year-old fossils. Swiss Journal of Palaeontology, 142, 21.

[27]

Haug, C. Zippel, A. Hassenbach, C. Haug, G.T. and Haug, J.T. (2022a) A split-footed lacewing larva from about 100-million-year-old amber indicates a now extinct hunting strategy for neuropterans. Bulletin of Geosciences, 97, 453-464.

[28]

Haug, G.T. Haug, C. Pazinato, P.G. Braig, F. Perrichot, V. Gröhn, C. et al. (2020a) The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time. Palaeontologia Electronica, 23, a39.

[29]

Haug, G.T. Haug, C. van der Wal, S. Müller, P. and Haug, J.T. (2022b) Split-footed lacewings declined over time: indications from the morphological diversity of their antlion-like larvae. PalZ, 96, 29-50.

[30]

Haug, J.T. Baranov, V. Müller, P. and Haug, C. (2021) New extreme morphologies as exemplified by 100 million-year-old lacewing larvae. Scientific Reports, 11, 20432.

[31]

Haug, J.T. Engel, M.S. Mendes dos Santos, P. Haug, G.T. Müller, P. and Haug, C. (2022c) Declining morphological diversity in snakefly larvae during last 100 million years. PalZ, 96, 749-780.

[32]

Haug, J.T. Linhart, S. Haug, G.T. Gröhn, C. Hoffeins, C. Hoffeins, H.-W. et al. (2022d) The diversity of aphidlion-like larvae over the last 130 million years. Insects, 13, 336.

[33]

Haug, J.T. Müller, P. and Haug, C. (2019a) A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters, 5, 29.

[34]

Haug, J.T. Müller, P. and Haug, C. (2019b) A 100-million-year old slim insectan predator with massive venom-injecting stylets—a new type of neuropteran larva from Burmese amber. Bulletin of Geosciences, 94, 431-440.

[35]

Haug, J.T. Müller, P. and Haug, C. (2020b) A 100 million-year-old snake-fly larva with an unusually large antenna. Bulletin of Geosciences, 95, 167-177.

[36]

Inglis, G.N. Bragg, F. Burls, N.J. Cramwinckel, M.J. Evans, D. Foster, G.L. et al. (2020) Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene-Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 16, 1953-1968.

[37]

Janzen, J.W. (2002) Arthropods in Baltic Amber. Ampyx Verlag, Halle, p. 167.

[38]

Kirejtshuk, A.G. and Nel, A. (2013) Current knowledge of Coleoptera (Insecta) from the lowermost Eocene Oise amber. Insect Systematics & Evolution, 44, 175-201.

[39]

Lyubarsky, G.Y. Perkovsky, E.E. and Vasilenko, D.V. (2023) Unexpected diversity of Xenoscelinae in Priabonian European amber: the third xenosceline species from Rovno amber. Life, 13, 636.

[40]

MacLeod, E.G. (1970) The Neuroptera of the Baltic Amber. I. Ascalaphidae, Nymphidae, and Psychopsidae. Psyche: A Journal of Entomology, 77, 147-180.

[41]

Makarkin, V.N. Wedmann, S. and Weiterschan, T. (2012) First record of a fossil larva of Hemerobiidae (Neuroptera) from Baltic amber. Zootaxa, 3417, 53-63.

[42]

Mänd, K. Muehlenbachs, K. McKellar, R.C. Wolfe, A.P. and Konhauser, K.O. (2018) Distinct origins for Rovno and Baltic ambers: evidence from carbon and hydrogen stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 505, 265-273.

[43]

Mantoanelli, E. Tauber, C.A. Albuquerque, G.S. and Tauber, M.J. (2011) Larvae of four Leucochrysa (Nodita) species (Neuroptera: Chrysopidae: Leucochrysini) from Brazil's Atlantic coast. Annals of the Entomological Society of America, 104, 1233-1259.

[44]

Mengel, L. Linhart, S. Haug, G.T. Weiterschan, T. Müller, P. Hoffeins, C. et al. (2023) The morphological diversity of dragon lacewing larvae (Nevrorthidae, Neuroptera) changed more over geological time scales than anticipated. Insects, 14, 749.

[45]

Monserrat, V.J. (1982) Sobre los Neurópteros de las Islas Canarias III Chrysopa flaviceps (Brullé 1838) (Neur., Plan., Chrysopidae). Boletín de la asociación Española de Entomología, 6, 113-119.

[46]

Monserrat, V.J. (2008) Nuevos datos sobre algunas especies de crisópidos (Insecta: Neuroptera: Chrysopidae). Heteropterus: Revista De Entomología, 8, 171-196.

[47]

Nel, A. De Ploëg, G. Millet, J. Menier, J.J. and Waller, A. (2004) The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris Basin. Geologica Acta: An International Earth Science Journal, 2, 3-8.

[48]

Pérez-de la Fuente, R. Delclòs, X. Peñalver, E. Speranza, M. Wierzchos, J. Ascaso, C. et al. (2012) Early evolution and ecology of camouflage in insects. Proceedings of the National Academy of Sciences USA, 109, 21414-21419.

[49]

Pérez-de la Fuente, R. Delclos, X. Penalver, E. and Engel, M.S. (2016) A defensive behavior and plant-insect interaction in Early Cretaceous amber-the case of the immature lacewing Hallucinochrysa diogenesi. Arthropod Structure & Development, 45, 133-139.

[50]

Pérez-de la Fuente, R. Peñalver, E. Azar, D. and Engel, M.S. (2018) A soil-carrying lacewing larva in Early Cretaceous Lebanese amber. Scientific Reports, 8, 16663.

[51]

Pérez-de la Fuente, R. Engel, M.S. Azar, D. and Peñalver, E. (2019) The hatching mechanism of 130-million-year-old insects: an association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology, 62, 547-559.

[52]

Perkovsky, E.E. (2018) Only a half of species of Hymenoptera in Rovno amber is common with Baltic amber. Vestnik Zoologii, 52, 353-360.

[53]

Perkovsky, E.E. Rasnitsyn, A.P. Vlaskin, A.P. and Taraschuk, M.V. (2007) A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. African Invertebrates, 48, 229-245.

[54]

Perkovsky, E.E. Zosimovich, V.Y. and Vlaskin, A.P. (2003) A Rovno amber fauna: a preliminary report. Acta Zoologica Cracoviensia, 46, 423-430.

[55]

Principi, M.M. (1947) Contributi allo studio dei Neurotteri Italiani V Ricerche su Chrysopa formosa Brauer e su alcuni suoi parassiti. Bollettino Dell'instituto Di Entomologia Della Università Di Bologna, 16, 134-175.

[56]

Principi, M.M. (1954) Contributi allo studio dei Neurotteri italiani XI Chrysopa viridana. Bollettino Dell'instituto Di Entomologia Della Università Di Bologna, 20, 359-376.

[57]

Principi, M.M. (1956) Contributi allo studio dei Neurotteri Italiani. XIII. Studio morfologico, etologico e sistematico di un gruppo omogeneo di specie del Gen. Chrysopa Leach (C. flavifrons Brauer, prasina Burm. e clathrata Schn.). Bollettino Dell'istituto Di Entomologia Della Università Degli Studi Di Bologna, 21, 319-410.

[58]

Rust, J. Singh, H. Rana, R.S. McCann, T. Singh, L. Anderson, K. et al. (2010) Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Sciences USA, 107, 18360-18365.

[59]

Seredszus, F. and Wichard, W. (2002) Buchonomyiinae (Diptera, Chironomidae) im Baltischen Bernstein. [Buchonomyiinae (Diptera, Chironomidae) in Baltic amber]. Studia Dipterologica, 9, 393-402.

[60]

Seredszus, F. and Wichard, W. (2007) Fossil chironomids (Insecta, Diptera) in Baltic amber. Palaeontographica, Abteilung A, 279, 49-91.

[61]

Seredszus, F. and Wichard, W. (2011) Overview and description of fossil non-biting midges in Baltic amber (Diptera: Chironomidae). Studia Dipterologica, 17, 121-129.

[62]

Setty, S. Cramwinckel, M.J. van Nes, E.H. van de Leemput, I.A. Dijkstra, H.A. Lourens, L.J. et al. (2023) Loss of Earth system resilience during early Eocene transient global warming events. Science Advances, 9, eade5466.

[63]

Smith, R.C. (1926) The trash-carrying habit of certain lace wing larvae. The Scientific Monthly, 23, 265-267.

[64]

Stebner, F. Szadziewski, R. Singh, H. Gunkel, S. and Rust, J. (2017) Biting midges (Diptera: Ceratopogonidae) from Cambay amber indicate that the Eocene fauna of the Indian subcontinent was not isolated. PLoS ONE, 12, e0169144.

[65]

Szwedo, J. and Sontag, E. (2013) The flies (Diptera) say that amber from the Gulf of Gdańsk, Bitterfeld and Rovno is the same Baltic amber. Polish Journal of Entomology, 82, 379-388.

[66]

Tauber, C.A. (1974) Systematics of North American chrysopid larvae Chrysopa carnea group neuroptera. The Canadian Entomologist, 106, 1133-1153.

[67]

Tauber, C.A. (2003) Generic characteristics of Chrysopodes Neuroptera Chrysopidae with new larval descriptions and a review of species from the United States and Canada. Annals of the Entomological Society of America, 96, 472-490.

[68]

Tauber, C.A. DeLeón, T. Arroyo, J.I.L. and Tauber, M.J. (1998) Ceraeochrysa placita Neuroptera Chrysopidae generic characteristics of larvae larval descriptions and life cycle. Annals of the Entomological Society of America, 91, 608-618.

[69]

Tierney, J.E. Zhu, J. Li, M. Ridgwell, A. Hakim, G.J. Poulsen, C.J. et al. (2022) Spatial patterns of climate change across the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences USA, 119, e2205326119.

[70]

Toschi, C.A. (1965) The taxonomy life histories and mating behavior of the green lacewings of Strawberry Canyon (Neuroptera: Chrysopidae). Hilgardia, 36, 391-433.

[71]

Tsukaguchi, S. (1979) Taxonomic notes on Brinckochrysa kintoki Okamoto Neuroptera Chrysopidae. Kontyû, 47, 358-366.

[72]

Vršanský, P. Cifuentes-Ruiz, P. Vidlička, L. Čiampor, F. and Vega, F.J. (2011) Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geologica Carpathica, 62, 463-475.

[73]

Vršanský, P. Vidlička, L. Čiampor Jr., F. and Marsh, F. (2012) Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Science, 19, 143-152.

[74]

Vršanský, P. Vidlička, L. Barna, P. Bugdaeva, E. and Markevich, V. (2013) Paleocene origin of the cockroach families Blaberidae and Corydiidae: evidence from Amur River region of Russia. Zootaxa, 3635, 117-126.

[75]

Wang, B. Rust, J. Engel, M.S. Szwedo, J. Dutta, S. Nel, A. et al. (2014) A diverse paleobiota in Early Eocene Fushun amber from China. Current Biology, 24, 1606-1610.

[76]

Wang, B. Xia, F. Engel, M.S. Perrichot, V. Shi, G. Zhang, H. et al. (2016) Debris-carrying camouflage among diverse lineages of Cretaceous insects. Science Advances, 2, e1501918.

[77]

Wang, B. Zhang, H. and Azar, D. (2011) The first Psychodidae (Insecta: Diptera) from the Lower Eocene Fushun amber of China. Journal of Paleontology, 85, 1154-1159.

[78]

Weitschat, W. (2009) Jäger, Gejagte, Parasiten und Blinde Passagiere-Momentaufnahmen aus dem Bernsteinwald. Denisia, 26 /Kataloge Der Oberösterreichischen Landesmuseen Neue Serie, 86, 243-256.

[79]

Weitschat, W. and Wichard, W. (2002) Atlas of Plants and Animals in Baltic Amber. Dr. Friedrich Pfeil, München.

[80]

Wichard, W. (2013) Wasserinsekten in Bitterfelder Bernstein. Exkursionsführer Und Veröffentlichungen Der DGG, 249, 45-53.

[81]

Wichard, W. Gröhn, C. and Seredszus, F. (2009) Aquatic insects in Baltic amber: Wasserinsekten im baltischen Bernstein, p. 228. Remagen: Kessel.

[82]

Zhang, Q. Nel, A. Azar, D. and Wang, B. (2016) New Chinese psocids from Eocene Fushun amber (Insecta: Psocodea). Alcheringa: An Australasian Journal of Palaeontology, 40, 366-372.

[83]

Zippel, A. Kiesmüller, C. Haug, G.T. Müller, P. Weiterschan, T. Haug, C. et al. (2021) Long-headed predators in Cretaceous amber—fossil findings of an unusual type of lacewing larva. Palaeoentomology, 4, 475-498.

RIGHTS & PERMISSIONS

2024 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/