Kings and queens of termites are endowed with an extraordinary longevity coupled with lifelong fecundity. We recently reported that termite kings and queens display a dramatically increased enzymatic activity and abundance of telomerase in their somatic organs when compared to short-lived workers and soldiers. We hypothesized that this telomerase activation may represent a noncanonical pro-longevity function, independent of its canonical role in telomere maintenance. Here, we explore this avenue and investigate whether the presumed noncanonical role of telomerase may be due to alternative splicing of the catalytic telomerase subunit TERT and whether the subcellular localization of TERT isoforms differs among organs and castes in the termite Prorhinotermes simplex. We empirically confirm the expression of four in silico predicted splice variants (psTERT1-A, psTERT1-B, psTERT2-A, psTERT2-B), defined by N-terminal splicing implicating differential localizations, and C-terminal splicing giving rise to full-length and truncated isoforms. We show that the transcript proportions of the psTERT are caste- and tissue-specific and that the extranuclear full-length isoform TERT1-A is relatively enriched in the soma of neotenic kings and queens compared to their gonads and to the soma of workers. We also show that extranuclear TERT protein quantities are significantly higher in the soma of kings and queens compared to workers, namely due to the cytosolic TERT. Independently, we confirm by microscopy the extranuclear TERT localization in somatic organs. We conclude that the presumed pleiotropic action of telomerase combining the canonical nuclear role in telomere maintenance with extranuclear functions is driven by complex TERT splicing.
Syntaxin 1A (Syx1A) has diverse and indispensable functions in animals. Previous studies have mainly focused on the roles of Syx1A in Drosophila, and so how Syx1A operates during the development of other insects remains poorly understood. This study investigated whether disrupting LmSyx1A using RNA interference (RNAi) affects the growth and development of Locusta migratoria. LmSyx1A was expressed in all tissues tested, with the highest expression observed in the fat body. After 5th-instar nymphs were injected with double-stranded LmSyx1A (dsLmSyx1A), none of the nymphs were able to molt normally and all eventually died. The silencing of LmSyx1A resulted in the cessation of feeding, body weight loss, and atrophy of the midgut and gastric cecum in locusts. Hematoxylin and eosin (H&E) staining showed that the columnar cells in the midgut were severely damaged, with microvilli defects visible in dsLmSyx1A-injected nymphs. Secretory vesicles were observed with transmission electron microscopy (TEM). In addition, reverse transcription quantitative polymerase chain reaction (RT-qPCR) further indicates that silencing LmSyx1A repressed the expression of genes involved in the insulin/mammalian target of rapamycin (mTOR)-associated nutritional pathway. Taken together, these results suggest that LmSyx1A significantly affects the midgut cell layer of locust nymphs, which was partially associated with the downregulation of the insulin/mTOR-associated nutritional pathway. Thus, we argue that LmSyx1A is a suitable target for developing dsRNA-based biological pesticides for managing L. migratoria.
Insects have to obtain sterols from food due to the inability to synthesize this essential nutrient de novo. For lepidopteran insects, they can convert a variety of phytosterols into cholesterol to meet their growth needs. The final step of the cholesterol biosynthesis is the metabolism of desmosterol catalyzed by 24-dehydrocholesterol reductase (DHCR24). In this study, we identified a DHCR24 homolog in the cotton bollworm Helicoverpa armigera, designated as H. armigera 24-dehydrocholesterol reductase (HaDHCR24)-1. The quantitative expression analyses indicated that HaDHCR24-1 was highly enriched in the midgut where dietary sterol uptake occurs. Compared to the control, the DHCR24-1 mutant larvae generated by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 technology accumulated more desmosterol in the gut, while the content of cholesterol was significantly reduced. A similar phenomenon was observed when the DHCR24 inhibitor, amiodarone, was applied to the insects. Moreover, DHCR24-1 played an important role for the usage of β-sitosterol, a major sterol in plants, in H. armigera, and loss of function of DHCR24-1 resulted in higher mortality on β-sitosterol. However, the DHCR24 homolog does not necessarily exist in the genomes of all insects. The loss of this gene occurred more frequently in the insects feeding on animals, which further support the role of DHCR24-1 in using phytosterols. This gene may have important potential in developing new strategies to control herbivory pests in Lepidoptera and other insect orders.
Transglutaminase (TGase) is a key enzyme that mediates hemolymph coagulation and is thought to contribute to the elimination of pathogenic microorganisms in invertebrates. The objective of this study was to elucidate the involvement of TGase in insect immune responses via functional analysis of this enzyme in the oriental armyworm, Mythimna separata, using recombinant proteins and RNA interference technique. We identified two TGase genes, mystgase1 and mystgase2, in Mythimna separata and found that both genes are expressed in all surveyed tissues in M. separata larvae. Significant changes were induced in hemocytes following Escherichia coli injection. Injection of Gram-positive bacteria (Micrococcus luteus) and Gram-negative bacteria (Escherichia coli and Serratia marcescens) into larvae triggered a time-specific induction of both mystgase1 and mystgase2 in hemocytes. Recombinant MysTGase1 and MysTGase2 proteins bound to both E. coli and M. luteus, localizing within bacterial clusters and resulting in agglutination in a Ca2+-dependent manner. The hemocytes of larvae injected with recombinant MysTGase1 or MysTGase2 exhibited enhanced phagocytic ability against E. coli, improved in vivo bacterial clearance, and increased resistance to S. marcescens, decreasing larval mortality rate. Conversely, RNA interference targeting mystgase1 or mystgase2 significantly reduced hemocyte phagocytic capability, decreased bacterial clearance, and increased susceptibility to S. marcescens infection, thereby increasing larval mortality rate. The findings of this study are anticipated to expand our understanding of the function of TGases within insect immune responses and may contribute to developing new pest control strategies.
Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood. In the current study, we describe the identification and characterization of the ABHD5 gene in the lepidopteran model insect, Bombyx mori. The tissue expression profile investigated using quantitative reverse transcription polymerase chain reaction (RT-qPCR) reveals that BmABHD5 is widely expressed in all tissues, with particularly high levels found in the midgut and testis. A binary transgenic CRISPR/Cas9 system was employed to conduct a functional analysis of BmABHD5, with the mutation of BmABHD5 leading to the dysregulation of lipid metabolism and excessive lipid accumulation in the larval midgut. Histological and physiological analysis further reveals a significant accumulation of lipid droplets in the midgut of mutant larvae. RNA-seq and RT-qPCR analysis showed that genes related to metabolic pathways were significantly affected by the absence of BmABHD5. Altogether, our data prove that BmABHD5 plays an important role in regulating tissue-specific lipid metabolism in the silkworm midgut.
Psocodean species are emerging as significant sanitary and stored-product pests, posing threats to human health and global food security. Out of an estimated 10 000 species, the whole genome sequences of only 4 species have been published. Genomic resources are crucial for establishing effective pest control and enhancing our understanding of the evolution of psocodean species. In this study, we employed Illumina and PacBio sequencing along with Hi-C scaffolding techniques to generate a chromosome-level genome assembly for the parthenogenetic booklouse Liposcelis bostrychophila. The assembled genome of this booklouse measures 291.67 Mb in length and comprises 9 chromosomes. Notably, the genome of L. bostrychophila exhibits a high level of heterozygosity and features a distinctive nonhomologous chromosome. This heterozygous characteristic of the parthenogenetic booklouse genome may arise from high mutation rates, based on genomic variations analysis across multiple generations. Our analysis revealed significantly expanded gene families, primarily associated with the detoxification and feeding habits of L. bostrychophila. These include integument esterases (ESTs), ATP-binding cassette (ABC) transporter genes and gustatory receptors (GRs). The high-quality genome sequence of L. bostrychophila provides valuable resources for further study on the molecular mechanisms of stress resistance. It enables researchers to identify crucial functional genes and facilitates research on the population genetics, evolution and phylogeny of booklice.
A systems biology approach was employed to gain insight into tick biology and interactions between vectors and pathogens. Haemaphysalis longicornis serves as one of the primary vectors of Babesia microti, significantly impacting human and animal health. Obtaining more information about their relationship is crucial for a comprehensive understanding of tick and pathogen biology, pathogen transmission dynamics, and potential control strategies. RNA sequencing of uninfected and B. microti-infected ticks resulted in the identification of 15 056 unigenes. Among these, 1 051 were found to be differentially expressed, with 796 being upregulated and 255 downregulated (P < 0.05). Integrated transcriptomics datasets revealed the pivotal role of immune-related pathways, including the Toll, Janus kinase/signal transducer and activator of transcription (JAK-STAT), immunodeficiency, and RNA interference (RNAi) pathways, in response to infection. Consequently, 3 genes encoding critical transcriptional factor Dorsal, Relish, and STAT were selected for RNAi experiments. The knockdown of Dorsal, Relish, and STAT resulted in a substantial increase in Babesia infection levels compared to the respective controls. These findings significantly advanced our understanding of tick–Babesia molecular interactions and proposed novel tick antigens as potential vaccine targets against tick infestations and pathogen transmission.
The tetraspanin gene family encodes cell-surface proteins that span the membrane 4 times and play critical roles in a wide range of biological processes across numerous organisms. Recent findings highlight the involvement of a tetraspanin of the lepidopteran pest Helicoverpa armigera in resistance to Bacillus thuringiensis Cry insecticidal proteins, which are extensively used in transgenic crops. Thus, a better understanding of lepidopteran tetraspanins is urgently needed. In the current study, genome scanning in 10 lepidopteran species identified a total of 283 sequences encoding potential tetraspanins. Based on conserved cysteine patterns in the large extracellular loop and their phylogenetic relationships, these tetraspanins were classified into 8 subfamilies (TspA to TspH). Six ancestral introns were identified within lepidopteran tetraspanin genes. Tetraspanins in TspA, TspB, TspC, and TspD subfamilies exhibit highly similar gene organization, while tetraspanins in the remaining 4 subfamilies exhibited variation in intron loss and/or gain during evolution. Analysis of chromosomal distribution revealed a lepidopteran-specific cluster of 10 to 11 tetraspanins, likely formed by tandem duplication events. Selective pressure analysis indicated negative selection across all orthologous groups, with ω values ranging between 0.004 and 0.362. However, positive selection was identified at 18 sites within TspB5, TspC5, TspE3, and TspF10. Furthermore, spatiotemporal expression analysis of H. armigera tetraspanins demonstrated variable expression levels across different developmental stages and tissues, suggesting diverse functions of tetraspanin members in this globally important insect pest. Our findings establish a solid foundation for subsequent functional investigations of tetraspanins in lepidopteran species.
Vitellogenin receptor (VgR) plays a crucial role in oogenesis by mediating endocytosis of vitellogenin and a portion of the yolk proteins in many insect species. However, the function of VgR in minute parasitoid wasps is largely unknown. Here, we applied Trichogramma dendrolimi, a minute egg parasitoid, as a study model to investigate the function of VgR in parasitoids. We developed RNA interference (RNAi) methods based on microinjection of prepupae in T. dendrolimi. RNAi employs nanomaterial branched amphipathic peptide capsules (BAPC) as a carrier for double-stranded RNA (dsRNA), significantly enhancing delivery efficiency. Also, artificial hosts without medium were used to culture the injected prepupae in vitro. Utilizing these methods, we found that ovarian growth was disrupted after knockdown of TdVgR, as manifested by the suppressed development of the ovariole and the inhibition of nurse cell internalization by oocytes. Also, the initial mature egg load in the ovary was significantly reduced. Notably, the parasitic capacity of the female adult with ovarian dysplasia was significantly decreased, possibly resulting from the low availability of mature eggs. Moreover, ovarian dysplasia in T. dendrolimi caused by VgR deficiency are conserved despite feeding on different hosts. The results confirmed a critical role of TdVgR in the reproductive ability of T. dendrolimi and provided a reference for gene functional studies in minute insects.
The Asian citrus psyllid, Diaphorina citri, is the primary vector of the HLB pathogen, Candidatus Liberibacter asiaticus (CLas). The acquisition of CLas shortens the developmental period of nymphs, accelerating the emergence into adulthood and thereby facilitating the spread of CLas. Cuticular proteins (CPs) are involved in insect emergence. In this study, we investigated the molecular mechanisms underlying CLas-promoted emergence in D. citri via CP mediation. Here, a total of 159 CP genes were first identified in the D. citri genome. Chromosomal location analysis revealed an uneven distribution of these CP genes across the 13 D. citri chromosomes. Proteomic analysis identified 54 differentially expressed CPs during D. citri emergence, with 14 CPs exhibiting significant differential expression after CLas acquisition. Five key genes, Dc18aa-1, Dc18aa-2, DcCPR-24, DcCPR-38 and DcCPR-58, were screened from the proteome and CLas acquisition. The silencing of these 5 genes through a modified feeding method significantly reduced the emergence rate and caused various abnormal phenotypes, indicating the crucial role that these genes play in D. citri emergence. This study provides a comprehensive overview of the role of CPs in D. citri and reveals that CLas can influence the emergence process of D. citri by regulating the expression of CPs. These key CPs may serve as potential targets for future research on controlling huanglongbing (HLB) transmission.
Wing dimorphism in Nilaparvata lugens is controlled by the insulin-like growth factor 1 (IGF-1) signaling – Forkhead transcription factors (IIS-FoxO) pathway. However, the role of this signal in the wing development program remains largely unclear. Here, we identified 2 R-SMAD proteins, NlMAD1 and NlMAD2, in the brown planthopper (BPH) transcriptome, derived from the intrinsic transforming growth factor-β pathway of insect wing development. Both proteins share high sequence similarity and conserved domains. Phylogenetic analysis placed them in the R-SMAD group and revealed related insect orthologs. The expression of Nlmad1 was elevated in the late instar stages of the macropterous BPH strain. Nlmad1 knockdown in nymphs results in malformed wings and reduced wing size in adults, which affects the forewing membrane. By contrast, Nlmad2 expression was relatively consistent across BPH strains and different developmental stages. Nlmad2 knockdown had a milder effect on wing morphology and mainly affected forewing veins and cuticle thickness in the brachypterous strain. NlMAD1 functions downstream of the IIS-FoxO pathway by mediating the FoxO-regulated vestigial transcription and wing morph switching. Inhibiting Nlmad1 partially reversed the long-winged phenotype caused by NlFoxO knockdown. These findings indicate that NlMAD1 and NlMAD2 play distinct roles in regulating wing development and morph differentiation in BPH. Generally, NlMAD1 is a key mediator of the IIS-FoxO pathway in wing morph switching.
N6-methyladenosine (m6A) is the most prevalent modification in cellular RNA which orchestrates diverse physiological and pathological processes during stress response. However, the differential m6A modifications that cope with herbivore stress in resistant and susceptible crop varieties remain unclear. Here, we found that rice stem borer (RSB) larvae grew better on indica rice (e.g., MH63, IR64, Nanjing 11) than on japonica rice varieties (e.g., Nipponbare, Zhonghua 11, Xiushui 11). Then, transcriptome-wide m6A profiling of representative resistant (Nipponbare) and susceptible (MH63) rice varieties were performed using a nanopore direct RNA sequencing approach, to reveal variety-specific m6A modifications against RSB. Upon RSB infestation, m6A methylation occurred in actively expressed genes in Nipponbare and MH63, but the number of methylation sites decreased across rice chromosomes. Integrative analysis showed that m6A methylation levels were closely associated with transcriptional regulation. Genes involved in herbivorous resistance related to mitogen-activated protein kinase, jasmonic acid (JA), and terpenoid biosynthesis pathways, as well as JA-mediated trypsin protease inhibitors, were heavily methylated by m6A, and their expression was more pronounced in RSB-infested Nipponbare than in RSB-infested MH63, which may have contributed to RSB resistance in Nipponbare. Therefore, dynamics of m6A modifications act as the main regulatory strategy for expression of genes involved in plant–insect interactions, which is attributed to differential responses of resistant and susceptible rice varieties to RSB infestation. These findings could contribute to developing molecular breeding strategies for controlling herbivorous pests.
The escalating use of nanodiamonds (NDs) has raised concerns about their ecotoxicological impact, prompting exploration of therapeutic interventions. This paper pioneers the examination of Vitamin B12-conjugated sericin (VB12-SER) as a potential therapeutic approach against ND-induced toxicity in darkling beetles (Blaps polychresta). The study analyzes mortality rates and organ-specific effects, covering the testis, ovary, and midgut, before and after treatments. Following exposure to 10 mg NDs/g body weight, within a subgroup of individuals termed ND2 with a mortality rate below 50%, two therapeutic treatments were administered, including pure sericin (SER) at 10 mg/mL and VB12-SER at 10.12 mg/mL. Consequently, five experimental groups (control, SER, ND2, ND2+SER, ND2+SER+VB12) were considered. Kaplan–Meier survival analysis was performed to assess the lifespan distribution of the insects in these groups over a 30-d period. Analyses revealed increased mortality and significant abnormalities induced by NDs within the examined organs, including cell death, DNA damage, enzyme dysregulation, antioxidant imbalances, protein depletion, lipid peroxidation, and morphological deformities. In contrast, the proposed treatments, especially (ND2+SER+VB12), demonstrated remarkable recovery, highlighting VB12-conjugated SER's potential in mitigating ND-triggered adverse effects. Molecular docking simulations affirmed binding stability and favorable interactions of the VB12-SER complex with target proteins. This research enhances understanding of NDs’ effects on B. polychresta, proposing it as an effective bioindicator, and introduces VB12-conjugated SER as a promising therapeutic strategy in nanotoxicological studies.
Short-chain dehydrogenases/reductases (SDRs) are ubiquitously distributed across diverse organisms and play pivotal roles in the growth, as well as endogenous and exogenous metabolism of various substances, including drugs. The expression levels of SDR genes are reportedly upregulated in the fenpropathrin (FEN)-resistant (FeR) strain of Tetranychus cinnabarinus. However, the functions of these SDR genes in acaricide tolerance remain elusive. In this study, the activity of SDRs was found to be significantly higher (2.26-fold) in the FeR strain compared to the susceptible strain (SS) of T. cinnabarinus. A specific upregulated SDR gene, named SDR112C1, exhibited significant overexpression (3.13-fold) in the FeR population compared with that in the SS population. Furthermore, the expression of SDR112C1 showed a significant increase in the response to FEN induction. Additionally, knockdown of the SDR112C1 gene resulted in decreased SDR activity and reduced mite viability against FEN. Importantly, heterologous expression and in vitro incubation assays confirmed that recombinant SDR112C1 could effectively deplete FEN. Moreover, the overexpression of the SDR112C1 gene in Drosophila melanogaster significantly decreased the toxicity of FEN to transgenic fruit flies. These findings suggest that the overexpression of SDR SDR112C1 is a crucial factor contributing to FEN tolerance in T. cinnabarinus. This discovery not only enhances our understanding of SDR-mediated acaricide tolerance but also introduces a new family of detoxification enzymes to consider in practice, beyond cytochrome P450s, carboxyl/choline esterases and glutathione S-transferases.
Entomopathogenic fungi may interact with insects’ symbiotic bacteria during infection. We hypothesized that topical infection with Beauveria bassiana may alter the microbiota of the Colorado potato beetle (CPB) and that these modifications may alter the course of mycoses. We used a model with two concentrations of conidia: (1) high concentration that causes rapid (acute) pathogenesis with fast mortality followed by bacterial decomposition of insects; (2) lower concentration that leads to prolonged pathogenesis ending in conidiation on cadavers. The fungal infections increased loads of enterobacteria and bacilli on the cuticle surface and in hemolymph and midgut, and the greatest increase was detected during the acute mycosis. By contrast, stronger activation of IMD and JAK–STAT signaling pathways in integuments and fat body was observed during the prolonged mycosis. Relatively stable (nonpathogenic) conditions remained in the midgut during both scenarios of mycosis with slight changes in bacterial communities, the absence of mesh and stat expression, a decrease in reactive oxygen species production, and slight induction of Toll and IMD pathways. Oral administration of antibiotic and predominant CPB bacteria (Enterobacteriaceae, Lactococcus, Pseudomonas) led to minor and mainly antagonistic effects in survival of larvae infected with B. bassiana. We believe that prolonged mycosis is necessary for successful development of the fungus because such pathogenesis allows the host to activate antibacterial reactions. Conversely, after infection with high concentrations of the fungus, the host's resources are insufficient to fully activate antibacterial defenses, and this situation makes successful development of the fungus impossible.
MicroRNAs (miRNAs) have started to play an important role in pest control, and novel miRNA-based transgenic insect-resistant plants are now emerging. However, an environmental risk assessment of these novel transgenic plants expressing insect miRNAs must be undertaken before promoting their application. Here, transgenic miR-14 rice, which has high resistance to the rice stem borer Chilo suppressalis, was used as an example for evaluation in this study. Taking the tier 1 risk assessment method in Bacillus thuringiensis (Bt) crops as a reference, the effects of the direct exposure of a non-target parasitoid, Cotesia chilonis, to a high concentration of miRNA were evaluated. The results showed that direct feeding with miR-14 at high concentration had no significant effects on the biological parameters of Co. chilonis, whereas when miR-14 was injected into Ch. suppressalis-parasitized larvae, the development duration of Co. chilonis was significantly affected. In combination with the real conditions of the rice paddy field, it could be inferred that transgenic miR-14 rice has no significant negative effects on the important non-target parasitoid, Co. chilonis. These results will provide a foundation for the establishment of a new safety evaluation system for novel RNAi-based transgenic plants.
The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.
Insects can adapt their walking patterns to complex and varied environments and retain the ability to walk even after significant changes in their physical attributes, such as amputation. Although the interleg coordination of intact insects has been widely described in previous studies, the adaptive walking patterns in free-walking insects with amputation of 1 or more legs are still unclear. The pentatomid bug Erthesina fullo exhibits a tripod gait, when walking freely on horizontal substrates, like many other insects. In this study, amputations were performed on this species to investigate changes in interleg coordination. The walking parameters were analyzed, such as the locations of touchdown and liftoff, cycle period, walking speed, and head displacement of intact and amputated insects. The results show that E. fullo displays adaptive interleg coordination in response to amputations. With 1 amputated leg, bugs changed to a 3-unit gait, whereas with 2 amputated legs they employed a wave gait. These data are helpful in exploring the motion mode control in walking insects and provide the theoretical basis for the gait control strategy of robots, when leg failure occurs.
Movement plays a crucial role in animal behavior. However, despite the prevalence of uneven terrains in nature, many movement studies are conducted in arenas with smooth substrates. This discrepancy raises questions about the ecological validity of such experiments. To address this gap, we investigated the effect of rough substrates on movement properties using the red flour beetle (Tribolium castaneum) as a model organism. Our findings revealed significant variations in movement behavior between rough and smooth substrates. Notably, beetles traveled longer distances on smooth surfaces compared to sandpaper and loose sand. Moreover, variations in step size were influenced by substrate treatment, with the highest values observed on sand and sandpaper treatments. The proportion of time spent standing still also showed sensitivity to substrate conditions. The interaction between substrate properties and beetle sex further influenced several movement properties. Even the spatial configuration of rough and smooth areas in the arena had an impact on beetle movement, with areas along the arena perimeter exhibiting a stronger effect. These results highlight the impact of uneven terrain on beetle movement, underscoring the importance of considering environmental conditions when designing experimental setups. Here, this refers to the substrate on which animals move, but it may refer to other conditions, such as the test arena size and shape, temperature, humidity, and illumination. Failure to account for these background environmental conditions may result in inadvertently examining the interaction of the tested animals with these conditions, rather than focusing on the effect of the treatments applied in the experiment.
Previous studies have demonstrated that associative learning and experience play important roles in the string-pulling of bumblebees (Bombus terrestris). However, the features of the target (artificial flower with sugar reward) and the string that bees learn in such tasks remain unknown. This study aimed to explore the specific aspects of the string-flower arrangement that bumblebees learn and how they prioritize these features. We show that bumblebees trained with string-pulling are sensitive to the flower stimuli; they exhibit a preference for pulling strings connected to flowers over strings that are not attached to a target. Additionally, they chose to pull strings attached to flowers of the same color and shape as experienced during training. The string feature also plays a crucial role for bumblebees when the flower features are identical. Furthermore, bees prioritized the features of the strings rather than the flowers when both cues were in conflict. Our results show that bumblebees solve string-pulling tasks by acquiring knowledge about the characteristics of both targets and strings, and contribute to a deeper understanding of the cognitive processes employed by bees when tackling non-natural skills.
Harvester ants are one of the most extensively studied groups of ants, especially the group foraging ants, Messor barbarus (Linnaeus, 1767), which construct long-lasting trunk trails. Limited laboratory investigations have delved into head-on encounters along foraging trails involving workers moving in opposing directions, with fewer corresponding studies conducted in the natural environment. To address this gap, we devised an in-field experimental design to induce lane segregation on the foraging trunk trail of M. barbarus. Using an image-based tracking method, we analyzed the foraging behavior of this species to assess the costs associated with head-on encounters and to figure out the natural coexistence of outgoing and returning workers on a bidirectional route. Our results consistently reveal heightened straightness and speed in unidirectional test lanes, accompanied by an elevated foraging rate compared to bidirectional lanes. This suggests a potential impact of head-on collisions on foraging behavior, especially on foraging efficiency. Additionally, Kinematic analysis revealed distinct movement patterns between outbound and inbound flows, particularly low speed and sinuous trajectories of inbounding unladen workers. The study of encounter rates in two traffic systems hints at the plausible utilization of individual memory by workers within trails, underscoring the pivotal role of encounters in information exchange and load transfer.
We made separate experiments to examine life-history traits and activities of protective enzymes as affected by carbon dioxide (CO2) elevation to 780 μL/L as compared to 390 μL/L in imidacloprid- or buprofezin-resistant strains of the brown planthopper (BPH) Nilaparvata lugens. We found an interaction effect between resistance and the CO2 level on the nymphal survival and duration in both resistant strains. Nymphal durations in both resistant strains were much shorter in the resistant than susceptible BPH at 780 μL/L but similar between them or slightly shorter in the resistant than susceptible BPH at 390 μL/L. Nymphal survival was lower for imidacloprid-resistant than its susceptible BPH at 390 μL/L but higher at 780 μL/L; it stayed unaffected by the CO2 elevation in buprofezin-resistant BPH. We did not observe an interaction effect between resistance and the CO2 level on major reproductive parameters in both resistant strains. But the 2 strains were not consistent across CO2 levels in all parameters. Our measurements of protective enzyme activities of superoxide dismutase, catalase, and peroxidase showed an interaction between resistance and the CO2 level. Overall, these enzymes became similar in activity between resistant and susceptible BPH at 780 μL/L compared to 390 μL/L and the change was more distinct in the imidacloprid- than buprofezin-resistant BPH strains. Our findings suggest that CO2 elevation can affect life-history traits of insecticide-resistant BPH, while the effect may vary depending on the kind of insecticides it is resistant to.