Journal home Browse Most accessed

Most accessed

  • Select all
  • ORIGINAL ARTICLE
    Yujie Wu, Qiang Wang, Weikang Yang, Sheng Zhang, Chuan-Xi Mao, Nana He, Shaojie Zhou, Chuanming Zhou, Wei Liu
    Insect Science, 2024, 31(3): 870-884. https://doi.org/10.1111/1744-7917.13307
    PDF

    Collective behaviors efficiently impart benefits to a diversity of species ranging from bacteria to humans. Fly larvae tend to cluster and form coordinated digging groups under crowded conditions, yet understanding the rules governing this behavior is in its infancy. We primarily took advantage of the Drosophila model to investigate cooperative foraging behavior. Here, we report that Drosophila-related species and the black soldier fly have evolved a conserved strategy of cluster digging in food foraging. Subsequently, we investigated relative factors, including larval stage, population density, and food stiffness and quality, that affect the cluster digging behavior. Remarkably, oxygen supply through the posterior breathing spiracles is necessary for the organization of digging clusters. More importantly, we theoretically devise a mathematical model to accurately calculate how the cluster digging behavior expands food resources by diving depth, cross-section area, and food volume. We found that cluster digging behavior approximately increases 2.2 fold depth, 1.7-fold cross-section area, and 1.9 fold volume than control groups, respectively. Amplification of food sources significantly facilitates survival, larval development, and reproductive success of Drosophila challenged with competition for limited food resources, thereby conferring trophic benefits to fitness in insects. Overall, our findings highlight that the cluster digging behavior is a pivotal behavior for their adaptation to food scarcity, advancing a better understanding of how this cooperative behavior confers fitness benefits in the animal kingdom.

  • ORIGINAL ARTICLE
    Jiayao Fan, Feng Shang, Huimin Pan, Chenyang Yuan, Tianyuan Liu, Long Yi, Jinjun Wang, Wei Dou
    Insect Science, 2024, 31(3): 937-952. https://doi.org/10.1111/1744-7917.13272
    PDF

    Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.

  • REVIEW
    Hui Wang, Qian Chen, Taiyun Wei
    Insect Science, 2024, 31(3): 683-693. https://doi.org/10.1111/1744-7917.13285
    PDF

    Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus–host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.

  • ORIGINAL ARTICLE
    Clément Tourbez, Carmelo Gómez-Martínez, Miguel Ángel González-Estévez, Amparo Lázaro
    Insect Science, 2024, 31(3): 971-988. https://doi.org/10.1111/1744-7917.13267
    PDF

    Pollination networks are increasingly used to model the complexity of interactions between pollinators and flowering plants in communities. Different methods exist to sample these interactions, with direct observations of plant–pollinator contacts in the field being by far the most common. Although the identification of pollen carried by pollinators allows uncovering interactions and increasing sample sizes, the methods used to build pollen-transport networks are variable and their effect on network structure remains unclear. To understand how interaction sampling influences the structure of networks, we analyzed the pollen found on wild bees from eight communities across Mallorca Island and investigated the differences in pollen loads between bee body parts (scopa vs. body) and sexes. We then assessed how these differences, as well as the uncovered interactions not detected in the field, influenced the structure of wild bee–plant networks. We identified a higher quantity and diversity of pollen in the scopa than in the rest of the female body, but these differences did not lead to differences in structure between plant-pollination (excluding scopa pollen) and bee-feeding interaction (including scopa pollen) networks. However, networks built with pollen data were richer in plant species and interactions and showed lower modularity and specialization (H2'), and higher nestedness than visitation networks based on field observations. Female interactions with plants were stronger compared to those of males, although not richer. Accordingly, females were more generalist (low d’) and tended to be more central in interaction networks, indicating their more key role structuring pollination networks in comparison to males. Our study highlights the importance of palynological data to increase the resolution of networks, as well as to understand important ecological questions such as the differences between plant-pollination and bee-feeding interaction networks, and the role of sexes in pollination.

  • ORIGINAL ARTICLE
    Qianhui Yu, Yan Liu, Shanshan Liu, Shaogang Li, Yifan Zhai, Qingchao Zhang, Li Zheng, Hao Zheng, Yifan Zhai, Xiaofei Wang
    Insect Science, 2024, 31(3): 911-926. https://doi.org/10.1111/1744-7917.13281
    PDF

    Bumblebees are important pollinators in agricultural ecosystems, but their abundance is declining globally. There is an urgent need to protect bumblebee health and their pollination services. Bumblebees possess specialized gut microbiota with potential to be used as probiotics to help defend at-risk bumblebee populations. However, evidence for probiotic benefits on bumblebees is lacking. Here, we evaluated how supplementation with Lactobacillus melliventris isolated from bumblebee gut affected the colony development of Bombus terrestris. This native strain colonized robustly and persisted long-term in bumblebees, leading to a significantly higher quality of offspring. Subsequently, the tyrosine pathway was upregulated in the brain and fat body, while the Wnt and mTOR pathways of the gut were downregulated. Notably, the field experiment in the greenhouse revealed the supplementation of L. melliventris led to a 2.5-fold increase in the bumblebee survival rate and a more than 10% increase in the number of flowers visited, indicating a better health condition and pollination ability in field conditions. Our study represents a first screening for the potential use of the native gut member, L. melliventris, as probiotic strains in hive supplement for bumblebee breeding, which may be a practical approach to improve immunity and hive health.

  • ORIGINAL ARTICLE
    Yingying Song, Li Liu, Fang Ouyang, Hongying Cui, Wenxiu Guo, Suhong Lv, Baohua Ye, Lili Li, Yi Yu, Xingyuan Men
    Insect Science, 2024, 31(3): 927-936. https://doi.org/10.1111/1744-7917.13276
    PDF

    Osmia solitary bees are important pollinators of various crops worldwide. Refrigeration has been widely used to synchronize the emergence time of Osmia species from cocoons with the blooming time of different crops, but the fitness of Osmia after refrigeration remains unknown. Here, the effects of long-term refrigeration at 0 °C on the vitality, flight ability, and metabolism of Osmia excavata, which is known as the “king of pollination” in China, were studied. The survival rate (>90% before 120 d), weight loss rate (<15% after 170 d), and mean flight speed of O. excavata were not greatly affected after long-term refrigeration. The content of fats, which have antifreeze and energy storage properties, was not significantly altered in O. excavata before 130 d of refrigeration, which might explain why the survival rates and flight speed of O. excavata remained high after long-term refrigeration. However, the flight duration and distance decreased significantly (P < 0.05), and both were positively correlated with the reduced trehalose levels in O. excavata (r = [+0.69] – [+0.71]; P < 0.05). Overall, these findings indicate that the pollination potential of O. excavata for various crops with different flowering periods is high after long-term refrigeration; however, long-term refrigeration may decrease pollination efficiency. Our findings highlight new research directions that could improve the ecological service function of refrigerated O. excavata.

  • ORIGINAL ARTICLE
    Hao Sun, Shuai Wang, Chong Liu, Wen-Kai Hu, Jin-Wei Liu, Ling-Jun Zheng, Meng-Yue Gao, Fang-Rui Guo, Song-Tao Qiao, Jun-Li Liu, Bo Sun, Cong-Fen Gao, Shun-Fan Wu
    Insect Science, 2024, 31(3): 835-846. https://doi.org/10.1111/1744-7917.13282
    PDF

    The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30). The realized heritability (h2) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7−806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.

  • REVIEW
    Zhao-Yang Wang, Kai-Xiao Nie, Ji-Chen Niu, Gong Cheng
    Insect Science, 2024, 31(3): 663-673. https://doi.org/10.1111/1744-7917.13193
    PDF

    Mosquito-borne viruses (MBVs) are a large class of viruses transmitted mainly through mosquito bites, including dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and chikungunya virus, which pose a major threat to the health of people around the world. With global warming and extended human activities, the incidence of many MBVs has increased significantly. Mosquito saliva contains a variety of bioactive protein components. These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates. Here, we review the physiological functions of mosquito salivary proteins (MSPs) in detail, the influence and the underlying mechanism of MSPs on the transmission of MBVs, and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.

  • ORIGINAL ARTICLE
    Xiaohui Cheng, Wan Zhao, Guohua Liang, Hong Lu, Yumei Fu, Yiming Li, Feng Cui
    Insect Science, 2024, 31(3): 720-732. https://doi.org/10.1111/1744-7917.13333
    PDF

    The small brown planthopper (SBPH, Laodelphax striatellus) is a significant rice pest, responsible for transmitting rice stripe virus (RSV) in a persistent and propagative manner. RSV is one of the most detrimental rice viruses, causing rice stripe disease, which results in considerable loss of rice grain yield. While RNA interference and gene knockout techniques have enabled gene downregulation in SBPH, no system currently exists for the overexpression of endogenous or exogenous genes. Consequently, the development of a protein expression system for SBPH is imperative to serve as a technical foundation for pest control and gene function investigations. This study aimed to construct an expression vector using the promoter of the constitutive-expressed tubulin gene of SBPH, and promoter of human cytomegalovirus (CMV). Fluorescence experiments demonstrated that both tubulin and CMV promoter could drive green fluorescent protein (GFP) expression in SBPH, and could also facilitate the expression of a nucleocapsid protein (NP) -GFP fusion protein containing viral NP with comparable efficiency. Through expression vector optimization, we have identified that the 3 tandem CMV promoters display a significantly higher promoter activity compared with both the 2 tandem CMV promoters and the single CMV promoter. In addition, the incorporation of Star polycation nanoparticles significantly enhanced the expression efficiency in SBPH. These results provide a promising technical platform for investigating gene functions in SBPH.

  • ORIGINAL ARTICLE
    Li-Lin Luo, Yang Lin, Jun-Hong Linghu, Wei Gong, Yuan-Hong Luo, Man Liu, Dao-Chao Jin, Guy Smagghe, Tong-Xian Liu, Shun-Hua Gui, Tian-Ci Yi
    Insect Science, 2024, 31(3): 773-791. https://doi.org/10.1111/1744-7917.13264
    PDF

    Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.

  • REVIEW
    Zhihao Ming, Zhiqiang Chen, Hao Tong, Xia Zhou, Tingting Feng, Jianfeng Dai
    Insect Science, 2024, 31(3): 652-662. https://doi.org/10.1111/1744-7917.13169
    PDF

    C-type lectins (CTLs) are a family of proteins that contain 1 or more carbohydrate-recognition domains (CRDs) and bind to a broad repertoire of ligands in the presence of calcium ions. CTLs play important roles in innate immune defenses against microorganisms by acting as pattern-recognition receptors (PRRs) for invading pathogens, such as bacteria, viruses, and parasites. After binding to pathogen-associated ligands, CTLs mediate immune responses, such as agglutination, phagocytosis, and the activation of phenol oxidase progenitors, thereby clearing pathogens. CTLs are an evolutionarily conserved family found in almost all vertebrates and invertebrates. Medical arthropods can acquire and transmit a range pathogens through various approaches, such as bloodsucking, lancing, and parasitism, thus infecting humans and animals with related diseases, some of which can be life-threatening. Recent studies have shown that lectins are important components of the arthropod immune system and are essential for the immune responses of arthropods to arthropod-borne pathogens. This article reviews the current understanding of the structure, function, and signaling pathways involved in CTLs derived from important medical arthropods.

  • ORIGINAL ARTICLE
    Nathan Meijer, Lisa Zoet, Theo de Rijk, Paul Zomer, Deborah Rijkers, H.J. van der Fels-Klerx, Joop J.A. van Loon
    Insect Science, 2024, 31(3): 817-834. https://doi.org/10.1111/1744-7917.13269
    PDF

    Black soldier fly larvae (Hermetia illucens) receive growing interest as a potential alternative animal feed source. These insects may be exposed to insecticide residues in the rearing substrate. This study aimed to investigate the effects of six different pyrethroid and organophosphate insecticides on this insect species’ performance. The toxicity of two “model” substances for each of these classes (cypermethrin; pirimiphos-methyl) was quantified, with and without the synergist piperonyl butoxide (PBO). Critical effect doses corresponding to 10% yield (CED10) for cypermethrin (0.4 mg/kg) and pirimiphos-methyl (4.8 mg/kg) were determined. The addition of PBO to cypermethrin enhanced its relative potency with a factor 2.6. These data were compared against the relative toxicity of two analogue substances in each class (permethrin, deltamethrin; chlorpyrifos-methyl, malathion). Results suggest that exposure to concentrations complying with legal limits can cause significant reductions in yield. Exposure to multiple substances at lower concentrations resulted in negative additive and synergistic effects. Of the tested substances, deltamethrin was most toxic, causing 94% yield at 0.5 mg/kg. Analytical results suggested that transfer of tested substances to the larval biomass was substance- and concentration-specific, but appeared to be correlated to reduced yields and the presence of PBO. Transfer of organophosphates was overall low (<2%), but ranged from 8% to 75% for pyrethroids. Due to very low limits in insect biomass (∼0.01 mg/kg), high transfer may result in noncompliance. It is recommended that rearing companies implement lower contractual thresholds, and that policymakers consider adjusting legally allowed maximum residue levels in insect feed.

  • ORIGINAL ARTICLE
    Nicolás Flaibani, Victoria Estefanía Ortiz, Juan José Fanara, Valeria Paula Carreira
    Insect Science, 2024, 31(3): 885-900. https://doi.org/10.1111/1744-7917.13273
    PDF

    Insect flight is a complex trait involved in different behaviors, from the search for sexual partners, food, or breeding sites. Many studies have postulated the adaptive advantages of certain morphological traits in relation to increased flight capacity, such as low values of wing loading or high values of wing:thorax ratio and wing–aspect ratio. However, few studies have evaluated the relationship between variables related to flight and morphological traits in Drosophila. This work aimed to study morphological traits in males and females of two pairs of sibling species: Drosophila buzzatii Patterson and Wheeler-Drosophila koeferae Fontdevila and Wasserman, and Drosophila melanogaster Meigen-Drosophila simulans Sturtevant, and to analyze its relationship with flight. We detected the highest proportion of flight time in D. koepferae and D. simulans compared to D. buzzatii and D. melanogaster, respectively. Our results also revealed sexual dimorphism, with males exhibiting a higher proportion of flight time than females. Surprisingly, we did not find a general pattern to explain the relationship between morphology and the proportion of flight time because associations varied depending upon the analyses (considering all groups together or each sex-species combination separately). Moreover, these associations explained a low percentage of variation, suggesting that other nonmorphological components related to flight, such as physiological variables, should be taken into account. This work allowed us to show the variability and complexity of an aspect of flight, suggesting that the adaptive role of the morphological traits studied might have been overestimated.

  • ORIGINAL ARTICLE
    Tingting Feng, Hao Tong, Qianqian Zhang, Zhihao Ming, Zhenyu Song, Xia Zhou, Jianfeng Dai
    Insect Science, 2024, 31(3): 694-706. https://doi.org/10.1111/1744-7917.13260
    PDF

    Serine proteinase inhibitors (serpins), identified from the hard tick Haemaphysalis longicornis of China, play significant roles in various animal physiological processes. In this study, we showed that H. longicornis serpins (Hlserpin-a and Hlserpin-b) were induced during blood-feeding in nymph ticks and exhibited anticoagulation activity in vitro. Silencing Hlserpins through RNA interference (RNAi) significantly impaired tick feeding. Immunization of mice with recombinant Hlserpins or passive transfer of Hlserpin antiserum significantly curtails the efficacy of tick feeding. Concurrently, the transmission of the Langat virus (LGTV) from ticks to mice witnessed a substantial decrease when Hlserpins were silenced. Our findings suggest that inhibiting Hlserpins can hamper tick engorgement and pathogen transmission, indicating the potential of Hlserpins as a vaccine to counter tick-borne diseases.

  • ORIGINAL ARTICLE
    Yun-Yun Fan, Yao Chi, Na Chen, Wilmer J. Cuellar, Xiao-Wei Wang
    Insect Science, 2024, 31(3): 707-719. https://doi.org/10.1111/1744-7917.13336
    PDF

    Sri Lankan cassava mosaic virus (SLCMV) is a prominent causative agent of cassava mosaic disease in Asia and relies on the whitefly Bemisia tabaci cryptic complex for its transmission. However, the molecular mechanisms involved in SLCMV transmission by B. tabaci have yet to be understood. In this study, we identified an aminopeptidase N-like protein (BtAPN) in B. tabaci Asia II 1, an efficient vector of SLCMV, which is involved in the SLCMV transmission process. Through the use of glutathione S-transferase pull-down assay and LC-MS/MS analysis, we demonstrated the interaction between BtAPN and the coat protein (CP) of SLCMV. This interaction was further confirmed in vitro, and we observed an induction of BtAPN gene expression following SLCMV infection. By interfering with the function of BtAPN, the quantities of SLCMV were significantly reduced in various parts of B. tabaci Asia II 1, including the whole body, midgut, hemolymph, and primary salivary gland. Furthermore, we discovered that BtAPN is conserved in B. tabaci Middle East-Asia Minor 1 (MEAM1) and interacts with the CP of tomato yellow leaf curl virus (TYLCV), a begomovirus known to cause severe damage to tomato production. Blocking BtAPN with antibody led to a significant reduction in the quantities of TYLCV in whitefly whole body and organs/tissues. These results demonstrate that BtAPN plays a generic role in interacting with the CP of begomoviruses and positively regulates their acquisition by the whitefly.

  • ORIGINAL ARTICLE
    Marie-Luise Contala, Patrick Krapf, Florian M. Steiner, Birgit C. Schlick-Steiner
    Insect Science, 2024, 31(3): 953-970. https://doi.org/10.1111/1744-7917.13263
    PDF

    Aggression has multiple benefits and is often coupled with other behaviors (“behavioral syndromes”). The level of aggressiveness is influenced by an adaptive benefit–cost ratio suggesting that benefits should outweigh the costs of aggression. Here, we assess if several behaviors are coupled in two behaviorally different populations (aggressive, peaceful) of the high-elevation ant Tetramorium alpestre. For three weeks, we collected colony fragments and analyzed boldness, exploring, foraging, and risk-taking behaviors. We hypothesized that the aggressive population is bolder, more explorative and risk-prone, and forages more food than the peaceful population. To test whether (a) the combination of experiments and parameters used yields a good setup, (b) populations differ behaviorally, and (c) populations display behavioral syndromes, we assessed (a) the frequency of repeatable behaviors of each experiment, (b) the behavioral means among populations, and (c) the behavioral repeatability, respectively. We found that (a) boldness and exploring were most repeatable and represent a good experimental setup, (b) the aggressive population was bolder and more explorative and risk-prone than the peaceful population, (c) boldness and exploring behaviors were highly repeatable in both populations, thus corroborating our hypothesis. The results suggest that boldness, exploring, and risk-taking but not foraging are presumably coupled with aggression and indicate the presence of behavioral syndromes in this ant. Under specific ecological conditions, aggression may be coupled with other behaviors and important for finding food. Aggression is probably adaptive in T. alpestre, possibly indicating that selection favors aggression at least partially, which may counteract the complete loss of intraspecific aggression.

  • REVIEW
    Li Gao, Wenxu Yang, Jingwen Wang
    Insect Science, 2024, 31(3): 674-682. https://doi.org/10.1111/1744-7917.13288
    PDF

    Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.

  • ORIGINAL ARTICLE
    Xubo Zhang, Mengqi Liu, Andi Cheng, Bernard Moussian, Jianzhen Zhang, Wei Dong
    Insect Science, 2024, 31(3): 748-758. https://doi.org/10.1111/1744-7917.13342
    PDF

    Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.

  • LETTER TO THE EDITOR
    Petr Kočárek, Ivona Horká, Vojtěch Bonczek, Markéta Kirstová
    Insect Science, 2024, 31(3): 989-992. https://doi.org/10.1111/1744-7917.13244
    PDF
  • ORIGINAL ARTICLE
    Xian Zhang, Qiao-Ran Wang, Qian Wu, Jun Gu, Li-Hua Huang
    Insect Science, 2024, 31(3): 759-772. https://doi.org/10.1111/1744-7917.13278
    PDF

    Molting and metamorphosis are important physiological processes in insects that are tightly controlled by ecdysone receptor (EcR) through the 20-hydroxyecdysone (20E) signaling pathway. EcR is a steroid nuclear receptor (SR). Several FK506-binding proteins (FKBPs) have been identified from the mammal SR complex, and are thought to be involved in the subcellular trafficking of SR. However, their roles in insects are poorly understood. To explore whether FKBPs are involved in insect molting or metamorphosis, we injected an FKBP inhibitor (FK506) into a lepidopteran insect, Spodoptera litura, and found that molting was inhibited in 61.11% of the larvae, and that the time for larvae to pupate was significantly extended. A total of 10 FKBP genes were identified from the genome of S. litura and were clustered into 2 distinct groups, according to their subcellular localization, with FKBP13 and FKBP14 belonging to the endoplasmic reticulum (ER) group and with the other members belonging to the cytoplasmic (Cy) group. All the CyFKBPs were significantly upregulated in the prepupal or pupal stages, with the opposite being observed for the ER group members. FK506 completely blocked the transfer of EcR to the nucleus under 20E induction, and significantly downregulated the transcriptional expression of many 20E signaling genes. A similar phenomenon was observed after RNA interference of 2 CyFKBPs (FKBP45 and FKBP12b), but not for FKBP13. Taken together, our data indicate that the cytoplasmic FKBPs, especially FKBP45 and FKBP12b, mediate the nuclear localization of EcR, thereby regulating the 20E signaling and ultimately affecting molting and metamorphosis in insects.

  • ORIGINAL ARTICLE
    Yuzhe Du, Shane Scheibener, Yucheng Zhu, Maribel Portilla, Mingling Zhang
    Insect Science, 2024, 31(3): 792-802. https://doi.org/10.1111/1744-7917.13280
    PDF

    Due to rapidly developed resistance, pest management relies less on pyrethroids to control economically damaging infestations of the tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) in cotton fields of Mississippi. Yet, pyrethroid resistance remains prevalent in TPB populations. This study assessed the resistance levels in adult TPB to six common pyrethroids and acephate. Resistant TBPs were collected from wild host plants in late October after harvest in the Mississippi Delta region of the United States. Based on LC50 values, the field-resistant TPBs displayed higher resistance to permethrin, esfenvalerate, and bifenthrin (approximately 30 fold) and moderate resistance to λ-cyhalothrin, β-cyfluthrin, ζ-cypermethrin, and acephate (approximately 15 fold). Further investigations showed that the inhibitors of three detoxification enzyme, triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO) had synergistic effects on permethrin, λ-cyhalothrin, and bifenthrin in resistant TPBs. Furthermore, elevated esterase, GST, and P450 activities were significantly expressed in field-resistant TPBs. Additionally, GST and esterase were reduced after 48 h exposure to certain pyrethroids at LC50 dose. The synergistic and biochemical assays consistently indicated that P450 and esterase were involved in pyrethroid detoxification in TPBs. This study provides valuable information for the continued use of pyrethroids and acephate in controlling TPBs in cotton fields in the Mississippi Delta region of the United States.

  • ORIGINAL ARTICLE
    Arnaud Ameline, Alain Karkach, Thomas Denoirjean, Martial Grondin, Florencia Molinari, Patrick Turpin, Hélène Delatte, Bernard Reynaud
    Insect Science, 2024, 31(3): 901-910. https://doi.org/10.1111/1744-7917.13279
    PDF

    Plant pathogens can alter the behavior of their insect vectors as well as their survival and reproduction. The African psyllid, Trioza erytreae, is one of the vectors of Huanglongbing, a citrus disease caused mainly by “Candidatus Liberibacter asiaticus” (CLas). The purpose of this study was to characterize the effects of CLas on the psyllid, T. erytreae using Citrus volkamerina plants as the study system. The study focused more specifically on the CLas effects prior to and after its acquisition by the psyllid T. erytreae. Our results did not support the hypothesis that CLas effects psyllid probing behavior prior to acquisition; few differences were observed between uninfected T. erytrea feeding on CLas-infected versus control plants. On the other hand, compared to psyllids that had completed their development on control plants, the ones that had completed their development on a CLas-infected plant exhibited changes in their behavior (greater velocity), physiology (smaller mass) and biochemistry (lower water and lipid content). Altogether, our results confirm the existence of a marked postacquisition effect on the vector locomotor behavior and a minor preacquisition effect of CLas on the vector behavior, which can be partially explained by physiological and biochemical changes.

  • ORIGINAL ARTICLE
    Qi Xue, Luc Swevers, Clauvis Nji Tizi Taning
    Insect Science, 2024, 31(3): 847-858. https://doi.org/10.1111/1744-7917.13271
    PDF

    Insect-specific neurotoxic peptides derived from the venoms of scorpions and spiders can cause acute paralysis and death when injected into insects, offering a promising insecticidal component for insect pest control. However, effective delivery systems are required to help neurotoxic peptides pass through the gut barrier into the hemolymph, where they can act. Here, we investigated the potential of a novel nanocarrier, Drosophila X virus-like particle (DXV-VLP), for delivering a neurotoxin from the scorpion Androctonus australis Hector (AaIT) against the invasive pest fruit fly, Drosophila suzukii. Our results show that the fusion proteins of DXV polyproteins with AaIT peptide at their C-termini could be sufficiently produced in Lepidoptera Hi5 cells in a soluble form using the recombinant baculovirus expression system, and could self-assemble into VLPs with similar particle morphology and size to authentic DXV virions. In addition, the AaIT peptides displayed on DXV-VLPs retained their toxicity, as demonstrated in injection bioassays that resulted in severe mortality (72%) in adults after 72 h. When fed to adults, mild mortality was observed in the group treated with DXV-AaIT (38%), while no mortality occurred in the group treated with AaIT peptide, thus indicating the significant role of DXV-VLPs in delivering AaIT peptides. Overall, this proof-of-concept study demonstrates for the first time that VLPs can be exploited to enhance oral delivery of insect-specific neurotoxic peptides in the context of pest control. Moreover, it provides insights for further improvements and potentially the development of neurotoxin-based bioinsecticides and/or transgenic crops for insect pest control.

  • ORIGINAL ARTICLE
    Lixian Wu, Yajing Xu, Liangbin Li, Dainan Cao, Fang Liu, Hongxia Zhao
    Insect Science, 2024, 31(3): 733-747. https://doi.org/10.1111/1744-7917.13274
    PDF

    During the pupal-adult eclosion process of holometabolous insects, the old cuticle is shed and replaced by a completely different new cuticle that requires tanning and expansion, along with extensive extracellular matrix (ECM) remodeling. In vertebrates, matrix metalloproteinases (MMPs), a class of zinc-dependent endopeptidases, play key roles in regulating the ECM that surrounds cells. However, little is known about these extracellular proteinases available in insects. The small hive beetle (SHB), Aethina tumida, is a widespread invasive parasite of honey bees. In this study, 6 MMP homologs were identified in the SHB genome. RNA interference experiments showed that all 6 AtMmps are not required for the larval-pupal transition, only AtMmp2 was essential for pupal-adult eclosion in SHB. Knockdown of AtMmp2 resulted in eclosion defects and wing expansion failure, as well as mortality within 3 d of adult eclosion. Transcriptomic analysis revealed that knockdown of AtMmp2 significantly increased expression of the Toll and Imd pathways, chitin metabolism, and cross-linking (such as the pro-phenoloxidase activating cascade pathway and the tyrosine-mediated cuticle sclerotization and pigmentation pathway). These data revealed evolutionarily conserved functions of Mmp2 in controlling adult eclosion and wing expansion, also provided a preliminary exploration of the novel function of regulating Toll and Imd pathways, as well as new insights into how MMPs regulate insect development and defense barriers.

  • ORIGINAL ARTICLE
    Deng Pan, Qiu-Juan Luo, Andrias O. O´Reilly, Guo-Rui Yuan, Jin-Jun Wang, Wei Dou
    Insect Science, 2024, 31(3): 803-816. https://doi.org/10.1111/1744-7917.13266
    PDF

    Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%–82.1% and 0.5%–31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and β-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.

  • ORIGINAL ARTICLE
    Samuel Boff, Manfred Ayasse
    Insect Science, 2024, 31(3): 859-869. https://doi.org/10.1111/1744-7917.13268
    PDF

    The aboveground oligolectic bee, Heriades truncorum, is a particularly good model for studying the impact of pesticides on sexual communication, since some aspects of its mating behavior have previously been described. We have tested (1) the interference of the pesticide flupyradifurone on male precopulatory behavior and male mating partner preferences, (2) the way that the pesticide interferes in male quality assessment by the female, and (3) the effects of the pesticide on the chemical compounds in the female cuticle. We exposed bees of both sexes to a sublethal concentration of flupyradifurone. Various behaviors were registered in a mating arena with two females (one unexposed and one exposed) and one male (either unexposed or exposed). Unexposed males were quicker to attempt to mate. Treatment also impacted precopulatory behavior and male quality assessment by females. Males approached unexposed females more quickly than insecticide-exposed ones. Females exposed to insecticide produced lower amounts of some cuticular hydrocarbons (sex pheromone candidates) and appeared less choosy than unexposed females. Our findings suggest that insecticide exposure affects sexual communication, playing a role both in male preference and in male quality assessment by the female.