Journal home Browse Most accessed

Most accessed

  • Select all
  • ORIGINAL ARTICLE
    Yujie Wu, Qiang Wang, Weikang Yang, Sheng Zhang, Chuan-Xi Mao, Nana He, Shaojie Zhou, Chuanming Zhou, Wei Liu
    Insect Science, 2024, 31(3): 870-884. https://doi.org/10.1111/1744-7917.13307
    PDF

    Collective behaviors efficiently impart benefits to a diversity of species ranging from bacteria to humans. Fly larvae tend to cluster and form coordinated digging groups under crowded conditions, yet understanding the rules governing this behavior is in its infancy. We primarily took advantage of the Drosophila model to investigate cooperative foraging behavior. Here, we report that Drosophila-related species and the black soldier fly have evolved a conserved strategy of cluster digging in food foraging. Subsequently, we investigated relative factors, including larval stage, population density, and food stiffness and quality, that affect the cluster digging behavior. Remarkably, oxygen supply through the posterior breathing spiracles is necessary for the organization of digging clusters. More importantly, we theoretically devise a mathematical model to accurately calculate how the cluster digging behavior expands food resources by diving depth, cross-section area, and food volume. We found that cluster digging behavior approximately increases 2.2 fold depth, 1.7-fold cross-section area, and 1.9 fold volume than control groups, respectively. Amplification of food sources significantly facilitates survival, larval development, and reproductive success of Drosophila challenged with competition for limited food resources, thereby conferring trophic benefits to fitness in insects. Overall, our findings highlight that the cluster digging behavior is a pivotal behavior for their adaptation to food scarcity, advancing a better understanding of how this cooperative behavior confers fitness benefits in the animal kingdom.

  • ORIGINAL ARTICLE
    Jiayao Fan, Feng Shang, Huimin Pan, Chenyang Yuan, Tianyuan Liu, Long Yi, Jinjun Wang, Wei Dou
    Insect Science, 2024, 31(3): 937-952. https://doi.org/10.1111/1744-7917.13272
    PDF

    Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.

  • ORIGINAL ARTICLE
    De-Hong Chen, Shu-Lin He, Wen-Bo Fu, Zhen-Tian Yan, Yun-Jian Hu, Huan Yuan, Ming-Bin Wang, Bin Chen
    Insect Science, 2024, 31(2): 599-612. https://doi.org/10.1111/1744-7917.13251
    PDF

    Mosquitoes are of great medical significance as vectors of many deadly diseases. Mitogenomes have been widely used in phylogenetic studies, but mitogenome knowledge within the family Culicidae is limited, and Culicidae phylogeny is far from resolved. In this study, we surveyed the mitogenomes of 149 Culicidae species, including 7 newly sequenced species. Comparative analysis of 149 mosquito mitogenomes shows gene composition and order to be identical to that of an ancestral insect, and the AT bias, length variation, and codon usage are all consistent with that of other reported Dipteran mitogenomes. Phylogenetic analyses based on the DNA sequences of the 13 protein-coding genes from the 149 species robustly support the monophyly of the subfamily Anophelinae and the tribes Aedini, Culicini, Mansoniini, Sabethini, and Toxorhynchitini. To resolve ambiguous relationships between clades within the subfamily Culicinae, we performed topological tests and show that Aedini is a sister to Culicini and that Uranotaeniini is a sister to (Mansoniini + (Toxorhynchitini + Sabethini)). In addition, we estimated divergence times using a Bayesian relaxation clock based on the sequence data and 3 fossil calibration points. The results show mosquitoes diverged during the Early Jurassic with massive Culicinae radiations during the Cretaceous, coincident with the emergence of angiosperms and the burst of mammals and birds. Overall, this study, which uses the largest number of Culicidae mitogenomes sequenced to date, comprehensively reveals the mitogenome characteristics and mitogenome-based phylogeny and divergence times of Culicidae, providing information for further studies on the mitogenome, phylogeny, evolution, and taxonomic revision of Culicidae.

  • REVIEW
    Hui Wang, Qian Chen, Taiyun Wei
    Insect Science, 2024, 31(3): 683-693. https://doi.org/10.1111/1744-7917.13285
    PDF

    Insects are the host or vector of diverse viruses including those that infect vertebrates, plants, and fungi. Insect viruses reside inside their insect hosts and are vertically transmitted from parent to offspring. The insect virus–host relationship is intricate, as these viruses can impact various aspects of insect biology, such as development, reproduction, sex ratios, and immunity. Arthropod-borne viruses (arboviruses) that cause substantial global health or agricultural problems can also be vertically transmitted to insect vector progeny. Multiple infections with insect viruses and arboviruses are common in nature. Such coinfections involve complex interactions, including synergism, dependence, and antagonism. Recent studies have shed light on the influence of insect viruses on the competence of insect vectors for arboviruses. In this review, we focus on the biological effects of insect viruses on the transmission of arboviruses by insects. We also discuss the potential mechanisms by which insect viruses affect the ability of hosts to transmit arboviruses, as well as potential strategies for disease control through manipulation of insect viruses. Analyses of the interactions among insect vectors, insect viruses and arboviruses will provide new opportunities for development of innovative strategies to control arbovirus transmission.

  • ORIGINAL ARTICLE
    Clément Tourbez, Carmelo Gómez-Martínez, Miguel Ángel González-Estévez, Amparo Lázaro
    Insect Science, 2024, 31(3): 971-988. https://doi.org/10.1111/1744-7917.13267
    PDF

    Pollination networks are increasingly used to model the complexity of interactions between pollinators and flowering plants in communities. Different methods exist to sample these interactions, with direct observations of plant–pollinator contacts in the field being by far the most common. Although the identification of pollen carried by pollinators allows uncovering interactions and increasing sample sizes, the methods used to build pollen-transport networks are variable and their effect on network structure remains unclear. To understand how interaction sampling influences the structure of networks, we analyzed the pollen found on wild bees from eight communities across Mallorca Island and investigated the differences in pollen loads between bee body parts (scopa vs. body) and sexes. We then assessed how these differences, as well as the uncovered interactions not detected in the field, influenced the structure of wild bee–plant networks. We identified a higher quantity and diversity of pollen in the scopa than in the rest of the female body, but these differences did not lead to differences in structure between plant-pollination (excluding scopa pollen) and bee-feeding interaction (including scopa pollen) networks. However, networks built with pollen data were richer in plant species and interactions and showed lower modularity and specialization (H2'), and higher nestedness than visitation networks based on field observations. Female interactions with plants were stronger compared to those of males, although not richer. Accordingly, females were more generalist (low d’) and tended to be more central in interaction networks, indicating their more key role structuring pollination networks in comparison to males. Our study highlights the importance of palynological data to increase the resolution of networks, as well as to understand important ecological questions such as the differences between plant-pollination and bee-feeding interaction networks, and the role of sexes in pollination.

  • ORIGINAL ARTICLE
    Qianhui Yu, Yan Liu, Shanshan Liu, Shaogang Li, Yifan Zhai, Qingchao Zhang, Li Zheng, Hao Zheng, Yifan Zhai, Xiaofei Wang
    Insect Science, 2024, 31(3): 911-926. https://doi.org/10.1111/1744-7917.13281
    PDF

    Bumblebees are important pollinators in agricultural ecosystems, but their abundance is declining globally. There is an urgent need to protect bumblebee health and their pollination services. Bumblebees possess specialized gut microbiota with potential to be used as probiotics to help defend at-risk bumblebee populations. However, evidence for probiotic benefits on bumblebees is lacking. Here, we evaluated how supplementation with Lactobacillus melliventris isolated from bumblebee gut affected the colony development of Bombus terrestris. This native strain colonized robustly and persisted long-term in bumblebees, leading to a significantly higher quality of offspring. Subsequently, the tyrosine pathway was upregulated in the brain and fat body, while the Wnt and mTOR pathways of the gut were downregulated. Notably, the field experiment in the greenhouse revealed the supplementation of L. melliventris led to a 2.5-fold increase in the bumblebee survival rate and a more than 10% increase in the number of flowers visited, indicating a better health condition and pollination ability in field conditions. Our study represents a first screening for the potential use of the native gut member, L. melliventris, as probiotic strains in hive supplement for bumblebee breeding, which may be a practical approach to improve immunity and hive health.

  • ORIGINAL ARTICLE
    Yingying Song, Li Liu, Fang Ouyang, Hongying Cui, Wenxiu Guo, Suhong Lv, Baohua Ye, Lili Li, Yi Yu, Xingyuan Men
    Insect Science, 2024, 31(3): 927-936. https://doi.org/10.1111/1744-7917.13276
    PDF

    Osmia solitary bees are important pollinators of various crops worldwide. Refrigeration has been widely used to synchronize the emergence time of Osmia species from cocoons with the blooming time of different crops, but the fitness of Osmia after refrigeration remains unknown. Here, the effects of long-term refrigeration at 0 °C on the vitality, flight ability, and metabolism of Osmia excavata, which is known as the “king of pollination” in China, were studied. The survival rate (>90% before 120 d), weight loss rate (<15% after 170 d), and mean flight speed of O. excavata were not greatly affected after long-term refrigeration. The content of fats, which have antifreeze and energy storage properties, was not significantly altered in O. excavata before 130 d of refrigeration, which might explain why the survival rates and flight speed of O. excavata remained high after long-term refrigeration. However, the flight duration and distance decreased significantly (P < 0.05), and both were positively correlated with the reduced trehalose levels in O. excavata (r = [+0.69] – [+0.71]; P < 0.05). Overall, these findings indicate that the pollination potential of O. excavata for various crops with different flowering periods is high after long-term refrigeration; however, long-term refrigeration may decrease pollination efficiency. Our findings highlight new research directions that could improve the ecological service function of refrigerated O. excavata.

  • ORIGINAL ARTICLE
    Mei-Mei Li, Qi Yang, Li-Hui Chen, Yan-Ying Li, Jun-Xiang Wu, Xiang-Li Xu
    Insect Science, 2024, 31(2): 417-434. https://doi.org/10.1111/1744-7917.13246
    PDF

    Mythimna separata is a notorious phytophagous pest which poses serious threats to cereal crops owing to the gluttony of the larvae. Because short neuropeptide F (sNPF) and its receptor sNPFR are involved in a diversity of physiological functions, especially in functions related to feeding in insects, it is a molecular target for pest control. Herein, an sNPF and 2 sNPFRs were identified and cloned from M. separata. Bioinformatics analysis revealed that the sNPF and its receptors had a highly conserved RLRFamide C-terminus and 7 transmembrane domains, respectively. The sNPF and its receptor genes were distributed across larval periods and tissues, but 2 receptors had distinct expression patterns. The starvation-induced assay elucidated that sNPF and sNPFR expression levels were downregulated under food deprivation and recovered with subsequent re-feeding. RNA interference knockdown of sNPF, sNPFR1, and sNPFR2 by injection of double-stranded RNA into larvae not only suppressed food consumption and increased body size and weight, but also led to decrease of glycogen and total lipid contents, and increase of trehalose compared with double-stranded green fluorescent protein injection. Furthermore, molecular docking was performed on the interaction mode between sNPFR protein and its ligand sNPF based on the 3-dimensional models constructed by AlphaFold; the results indicated that both receptors were presumably activated by the mature peptide sNPF-2. These results revealed that sNPF signaling played a considerably vital role in the feeding regulation of M. separata and represents a potential control target for this pest.

  • ORIGINAL ARTICLE
    Hao Sun, Shuai Wang, Chong Liu, Wen-Kai Hu, Jin-Wei Liu, Ling-Jun Zheng, Meng-Yue Gao, Fang-Rui Guo, Song-Tao Qiao, Jun-Li Liu, Bo Sun, Cong-Fen Gao, Shun-Fan Wu
    Insect Science, 2024, 31(3): 835-846. https://doi.org/10.1111/1744-7917.13282
    PDF

    The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30). The realized heritability (h2) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7−806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.

  • ORIGINAL ARTICLE
    Jie Chen, Ziying Guan, Yunjie Ma, Qingxing Shi, Ting Chen, Muhammad Irfan Waris, Lihua Lyu, Yongyue Lu, Guojun Qi
    Insect Science, 2024, 31(2): 371-386. https://doi.org/10.1111/1744-7917.13291
    PDF

    Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the “re-development” of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.

  • ORIGINAL ARTICLE
    Xiaohui Cheng, Wan Zhao, Guohua Liang, Hong Lu, Yumei Fu, Yiming Li, Feng Cui
    Insect Science, 2024, 31(3): 720-732. https://doi.org/10.1111/1744-7917.13333
    PDF

    The small brown planthopper (SBPH, Laodelphax striatellus) is a significant rice pest, responsible for transmitting rice stripe virus (RSV) in a persistent and propagative manner. RSV is one of the most detrimental rice viruses, causing rice stripe disease, which results in considerable loss of rice grain yield. While RNA interference and gene knockout techniques have enabled gene downregulation in SBPH, no system currently exists for the overexpression of endogenous or exogenous genes. Consequently, the development of a protein expression system for SBPH is imperative to serve as a technical foundation for pest control and gene function investigations. This study aimed to construct an expression vector using the promoter of the constitutive-expressed tubulin gene of SBPH, and promoter of human cytomegalovirus (CMV). Fluorescence experiments demonstrated that both tubulin and CMV promoter could drive green fluorescent protein (GFP) expression in SBPH, and could also facilitate the expression of a nucleocapsid protein (NP) -GFP fusion protein containing viral NP with comparable efficiency. Through expression vector optimization, we have identified that the 3 tandem CMV promoters display a significantly higher promoter activity compared with both the 2 tandem CMV promoters and the single CMV promoter. In addition, the incorporation of Star polycation nanoparticles significantly enhanced the expression efficiency in SBPH. These results provide a promising technical platform for investigating gene functions in SBPH.

  • REVIEW
    Zhao-Yang Wang, Kai-Xiao Nie, Ji-Chen Niu, Gong Cheng
    Insect Science, 2024, 31(3): 663-673. https://doi.org/10.1111/1744-7917.13193
    PDF

    Mosquito-borne viruses (MBVs) are a large class of viruses transmitted mainly through mosquito bites, including dengue virus, Zika virus, Japanese encephalitis virus, West Nile virus, and chikungunya virus, which pose a major threat to the health of people around the world. With global warming and extended human activities, the incidence of many MBVs has increased significantly. Mosquito saliva contains a variety of bioactive protein components. These not only enable blood feeding but also play a crucial role in regulating local infection at the bite site and the remote dissemination of MBVs as well as in remodeling the innate and adaptive immune responses of host vertebrates. Here, we review the physiological functions of mosquito salivary proteins (MSPs) in detail, the influence and the underlying mechanism of MSPs on the transmission of MBVs, and the current progress and issues that urgently need to be addressed in the research and development of MSP-based MBV transmission blocking vaccines.

  • ORIGINAL ARTICLE
    Xiaojin Pei, Tiantian Bai, Yuan Luo, Zhanfeng Zhang, Sheng Li, Yongliang Fan, Tong-Xian Liu
    Insect Science, 2024, 31(2): 387-404. https://doi.org/10.1111/1744-7917.13245
    PDF

    Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.

  • ORIGINAL ARTICLE
    Nicolás Flaibani, Victoria Estefanía Ortiz, Juan José Fanara, Valeria Paula Carreira
    Insect Science, 2024, 31(3): 885-900. https://doi.org/10.1111/1744-7917.13273
    PDF

    Insect flight is a complex trait involved in different behaviors, from the search for sexual partners, food, or breeding sites. Many studies have postulated the adaptive advantages of certain morphological traits in relation to increased flight capacity, such as low values of wing loading or high values of wing:thorax ratio and wing–aspect ratio. However, few studies have evaluated the relationship between variables related to flight and morphological traits in Drosophila. This work aimed to study morphological traits in males and females of two pairs of sibling species: Drosophila buzzatii Patterson and Wheeler-Drosophila koeferae Fontdevila and Wasserman, and Drosophila melanogaster Meigen-Drosophila simulans Sturtevant, and to analyze its relationship with flight. We detected the highest proportion of flight time in D. koepferae and D. simulans compared to D. buzzatii and D. melanogaster, respectively. Our results also revealed sexual dimorphism, with males exhibiting a higher proportion of flight time than females. Surprisingly, we did not find a general pattern to explain the relationship between morphology and the proportion of flight time because associations varied depending upon the analyses (considering all groups together or each sex-species combination separately). Moreover, these associations explained a low percentage of variation, suggesting that other nonmorphological components related to flight, such as physiological variables, should be taken into account. This work allowed us to show the variability and complexity of an aspect of flight, suggesting that the adaptive role of the morphological traits studied might have been overestimated.

  • ORIGINAL ARTICLE
    Tingting Feng, Hao Tong, Qianqian Zhang, Zhihao Ming, Zhenyu Song, Xia Zhou, Jianfeng Dai
    Insect Science, 2024, 31(3): 694-706. https://doi.org/10.1111/1744-7917.13260
    PDF

    Serine proteinase inhibitors (serpins), identified from the hard tick Haemaphysalis longicornis of China, play significant roles in various animal physiological processes. In this study, we showed that H. longicornis serpins (Hlserpin-a and Hlserpin-b) were induced during blood-feeding in nymph ticks and exhibited anticoagulation activity in vitro. Silencing Hlserpins through RNA interference (RNAi) significantly impaired tick feeding. Immunization of mice with recombinant Hlserpins or passive transfer of Hlserpin antiserum significantly curtails the efficacy of tick feeding. Concurrently, the transmission of the Langat virus (LGTV) from ticks to mice witnessed a substantial decrease when Hlserpins were silenced. Our findings suggest that inhibiting Hlserpins can hamper tick engorgement and pathogen transmission, indicating the potential of Hlserpins as a vaccine to counter tick-borne diseases.

  • ORIGINAL ARTICLE
    Nathan Meijer, Lisa Zoet, Theo de Rijk, Paul Zomer, Deborah Rijkers, H.J. van der Fels-Klerx, Joop J.A. van Loon
    Insect Science, 2024, 31(3): 817-834. https://doi.org/10.1111/1744-7917.13269
    PDF

    Black soldier fly larvae (Hermetia illucens) receive growing interest as a potential alternative animal feed source. These insects may be exposed to insecticide residues in the rearing substrate. This study aimed to investigate the effects of six different pyrethroid and organophosphate insecticides on this insect species’ performance. The toxicity of two “model” substances for each of these classes (cypermethrin; pirimiphos-methyl) was quantified, with and without the synergist piperonyl butoxide (PBO). Critical effect doses corresponding to 10% yield (CED10) for cypermethrin (0.4 mg/kg) and pirimiphos-methyl (4.8 mg/kg) were determined. The addition of PBO to cypermethrin enhanced its relative potency with a factor 2.6. These data were compared against the relative toxicity of two analogue substances in each class (permethrin, deltamethrin; chlorpyrifos-methyl, malathion). Results suggest that exposure to concentrations complying with legal limits can cause significant reductions in yield. Exposure to multiple substances at lower concentrations resulted in negative additive and synergistic effects. Of the tested substances, deltamethrin was most toxic, causing 94% yield at 0.5 mg/kg. Analytical results suggested that transfer of tested substances to the larval biomass was substance- and concentration-specific, but appeared to be correlated to reduced yields and the presence of PBO. Transfer of organophosphates was overall low (<2%), but ranged from 8% to 75% for pyrethroids. Due to very low limits in insect biomass (∼0.01 mg/kg), high transfer may result in noncompliance. It is recommended that rearing companies implement lower contractual thresholds, and that policymakers consider adjusting legally allowed maximum residue levels in insect feed.

  • REVIEW
    Zhihao Ming, Zhiqiang Chen, Hao Tong, Xia Zhou, Tingting Feng, Jianfeng Dai
    Insect Science, 2024, 31(3): 652-662. https://doi.org/10.1111/1744-7917.13169
    PDF

    C-type lectins (CTLs) are a family of proteins that contain 1 or more carbohydrate-recognition domains (CRDs) and bind to a broad repertoire of ligands in the presence of calcium ions. CTLs play important roles in innate immune defenses against microorganisms by acting as pattern-recognition receptors (PRRs) for invading pathogens, such as bacteria, viruses, and parasites. After binding to pathogen-associated ligands, CTLs mediate immune responses, such as agglutination, phagocytosis, and the activation of phenol oxidase progenitors, thereby clearing pathogens. CTLs are an evolutionarily conserved family found in almost all vertebrates and invertebrates. Medical arthropods can acquire and transmit a range pathogens through various approaches, such as bloodsucking, lancing, and parasitism, thus infecting humans and animals with related diseases, some of which can be life-threatening. Recent studies have shown that lectins are important components of the arthropod immune system and are essential for the immune responses of arthropods to arthropod-borne pathogens. This article reviews the current understanding of the structure, function, and signaling pathways involved in CTLs derived from important medical arthropods.

  • ORIGINAL ARTICLE
    Li-Lin Luo, Yang Lin, Jun-Hong Linghu, Wei Gong, Yuan-Hong Luo, Man Liu, Dao-Chao Jin, Guy Smagghe, Tong-Xian Liu, Shun-Hua Gui, Tian-Ci Yi
    Insect Science, 2024, 31(3): 773-791. https://doi.org/10.1111/1744-7917.13264
    PDF

    Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.

  • ORIGINAL ARTICLE
    Hong Yan, Endong Wang, Guo-Shu Wei, Bo Zhang, Xuenong Xu
    Insect Science, 2024, 31(2): 551-561. https://doi.org/10.1111/1744-7917.13253
    PDF

    Microbial communities, derived from food, ambient, and inner, can affect host ecological adaption and evolution. Comparing with most phytophagous arthropods, predators may have more opportunities to develop specific microbiota depending on the level of prey specialization. To explore how diet sources affect host microbial communities and vary across predator species, we considered 3 types of predators from Phytoseiidae (Acari: Mesostigmata): polyphagous (Amblyseius orientalis Ehara, Neoseiulus barkeri Hughes, and Amblyseius swirskii Athias-Henrio), oligophagous (Neoseiulus californicus McGregor), and monophagous (Phytoseiulus persimilis Athias-Henriot) predatory mites. The polyphagous species were fed on 2 types of diets, natural prey and alternative prey. By using 16S rRNA sequencing, we found that diet was the main source of microbiota in predatory mites, while there was no clear pattern affected by prey specialization. Among 3 polyphagous predators, host species had a larger impact than prey on microbial composition. Unlike A. orientalis or N. barkeri which showed consistency in their microbiota, prey switching significantly affected β-diversity of bacterial composition in A. swirskii, with 56% of the microbial alteration. In short, our results confirmed the substantial influence of diet on host microbial construction in predatory species, and highlighted species differences in shaping the microbiota which are not necessarily related to prey specialization.

  • ORIGINAL ARTICLE
    Yun-Yun Fan, Yao Chi, Na Chen, Wilmer J. Cuellar, Xiao-Wei Wang
    Insect Science, 2024, 31(3): 707-719. https://doi.org/10.1111/1744-7917.13336
    PDF

    Sri Lankan cassava mosaic virus (SLCMV) is a prominent causative agent of cassava mosaic disease in Asia and relies on the whitefly Bemisia tabaci cryptic complex for its transmission. However, the molecular mechanisms involved in SLCMV transmission by B. tabaci have yet to be understood. In this study, we identified an aminopeptidase N-like protein (BtAPN) in B. tabaci Asia II 1, an efficient vector of SLCMV, which is involved in the SLCMV transmission process. Through the use of glutathione S-transferase pull-down assay and LC-MS/MS analysis, we demonstrated the interaction between BtAPN and the coat protein (CP) of SLCMV. This interaction was further confirmed in vitro, and we observed an induction of BtAPN gene expression following SLCMV infection. By interfering with the function of BtAPN, the quantities of SLCMV were significantly reduced in various parts of B. tabaci Asia II 1, including the whole body, midgut, hemolymph, and primary salivary gland. Furthermore, we discovered that BtAPN is conserved in B. tabaci Middle East-Asia Minor 1 (MEAM1) and interacts with the CP of tomato yellow leaf curl virus (TYLCV), a begomovirus known to cause severe damage to tomato production. Blocking BtAPN with antibody led to a significant reduction in the quantities of TYLCV in whitefly whole body and organs/tissues. These results demonstrate that BtAPN plays a generic role in interacting with the CP of begomoviruses and positively regulates their acquisition by the whitefly.

  • REVIEW
    Li Gao, Wenxu Yang, Jingwen Wang
    Insect Science, 2024, 31(3): 674-682. https://doi.org/10.1111/1744-7917.13288
    PDF

    Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.

  • ORIGINAL ARTICLE
    Xubo Zhang, Mengqi Liu, Andi Cheng, Bernard Moussian, Jianzhen Zhang, Wei Dong
    Insect Science, 2024, 31(3): 748-758. https://doi.org/10.1111/1744-7917.13342
    PDF

    Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.

  • ORIGINAL ARTICLE
    Marie-Luise Contala, Patrick Krapf, Florian M. Steiner, Birgit C. Schlick-Steiner
    Insect Science, 2024, 31(3): 953-970. https://doi.org/10.1111/1744-7917.13263
    PDF

    Aggression has multiple benefits and is often coupled with other behaviors (“behavioral syndromes”). The level of aggressiveness is influenced by an adaptive benefit–cost ratio suggesting that benefits should outweigh the costs of aggression. Here, we assess if several behaviors are coupled in two behaviorally different populations (aggressive, peaceful) of the high-elevation ant Tetramorium alpestre. For three weeks, we collected colony fragments and analyzed boldness, exploring, foraging, and risk-taking behaviors. We hypothesized that the aggressive population is bolder, more explorative and risk-prone, and forages more food than the peaceful population. To test whether (a) the combination of experiments and parameters used yields a good setup, (b) populations differ behaviorally, and (c) populations display behavioral syndromes, we assessed (a) the frequency of repeatable behaviors of each experiment, (b) the behavioral means among populations, and (c) the behavioral repeatability, respectively. We found that (a) boldness and exploring were most repeatable and represent a good experimental setup, (b) the aggressive population was bolder and more explorative and risk-prone than the peaceful population, (c) boldness and exploring behaviors were highly repeatable in both populations, thus corroborating our hypothesis. The results suggest that boldness, exploring, and risk-taking but not foraging are presumably coupled with aggression and indicate the presence of behavioral syndromes in this ant. Under specific ecological conditions, aggression may be coupled with other behaviors and important for finding food. Aggression is probably adaptive in T. alpestre, possibly indicating that selection favors aggression at least partially, which may counteract the complete loss of intraspecific aggression.

  • ORIGINAL ARTICLE
    Muhammad Irfan Waris, Yanyuan Lei, Guojun Qi, Ziying Guan, Abdul Rashied, Jie Chen, Lihua Lyu
    Insect Science, 2024, 31(2): 448-468. https://doi.org/10.1111/1744-7917.13301
    PDF

    The insect gustatory system participates in identifying potential food sources and avoiding toxic compounds. During this process, gustatory receptors (GRs) recognize feeding stimulant and deterrent compounds. However, the GRs involved in recognizing stimulant and deterrent compounds in the red imported fire ant, Solenopsis invicta, remain unknown. Therefore, we conducted a study on the genes SinvGR1, SinvGR32b, and SinvGR28a to investigate the roles of GRs in detecting feeding stimulant and deterrent compounds. In this current study, we found that sucrose and fructose are feeding stimulants and the bitter compound quinine is a feeding deterrent. The fire ant workers showed significant behavior changes to avoid the bitter taste in feeding stimulant compounds. Reverse transcription quantitative real-time polymerase chain reaction results from developmental stages showed that the SinvGR1, SinvGR32b, and SinvGR28a genes were highly expressed in fire ant workers. Tissue-specific expression profiles indicated that SinvGR1, SinvGR32b, and SinvGR28a were specifically expressed in the antennae and foreleg tarsi of workers, whereas SinvGR32b gene transcripts were also highly accumulated in the male antennae. Furthermore, the silencing of SinvGR1 or SinvGR32b alone and the co-silencing of both genes disrupted worker stimulation and feeding on sucrose and fructose. The results also showed that SinvGR28a is required for avoiding quinine, as workers with knockdown of the SinvGR28a gene failed to avoid and fed on quinine. This study first identified stimulant and deterrent compounds of fire ant workers and then the GRs involved in the taste recognition of these compounds. This study could provide potential target gustatory genes for the control of the fire ant.

  • ORIGINAL ARTICLE
    Chuan-Zhen Li, Yu-Hang Liu, Deng Pan, Meng-Hao Xia, Qiang Zhang, Yu-Chuang Li, Guo-Rui Yuan, Jin-Jun Wang, Wei Dou
    Insect Science, 2024, 31(2): 354-370. https://doi.org/10.1111/1744-7917.13265
    PDF

    Panonychus citri McGregor (Acari: Tetranychidae), a destructive citrus pest, causes considerable annual economic losses due to its short lifespan and rapid resistance development. MicroRNA (miRNA)-induced RNA interference is a promising approach for pest control because of endogenous regulation of pest growth and development. To search for miRNAs with potential insecticidal activity in P. citri, genome-wide analysis of miRNAs at different developmental stages was conducted, resulting in the identification of 136 miRNAs, including 73 known and 63 novel miRNAs. A total of 17 isomiRNAs and 12 duplicated miRNAs were characterized. MiR-1 and miR-252-5p were identified as reference miRNAs for P. citri and Tetranychus urticae. Based on differential expression analysis, treatments with miR-let-7a and miR-315 mimics and the miR-let-7a antagomir significantly reduced the egg hatch rate and resulted in abnormal egg development. Overexpression or downregulation of miR-34-5p and miR-305-5p through feeding significantly decreased the adult eclosion rate and caused molting defects. The 4 miRNAs, miR-let-7a, miR-315, miR-34-5p, and miR-305-5p, had important regulatory functions and insecticidal properties in egg hatching and adult eclosion. In general, these data advance our understanding of miRNAs in mite biology, which can assist future studies on insect-specific miRNA-based green pest control technology.

  • REVIEW
    Ananda R. Pereira Martins, Natalie B. Warren, W. Owen McMillan, Rowan D. H. Barrett
    Insect Science, 2024, 31(2): 328-353. https://doi.org/10.1111/1744-7917.13262
    PDF

    Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.

  • ORIGINAL ARTICLE
    Dongjing Wen, Jiayu Xie, Yao Yuan, Lirong Shen, Yufeng Yang, Wenfeng Chen
    Insect Science, 2024, 31(2): 503-523. https://doi.org/10.1111/1744-7917.13252
    PDF

    Royal jelly (RJ) is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees. It is widely claimed that RJ reduces oxidative stress. However, the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress. Whether RJ can clear the endogenous production of reactive oxygen species (ROS) in cells remains largely unknown. Here, we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila. We found that RJ enhanced sleep quality of aging Drosophila, which is decreased due to an increase of oxidative damage with age. RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat. Moreover, RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress. Sleep deprivation leads to accumulation of ROS in the gut cells, and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan. Mechanistically, RJ prevented cell oxidative damage caused by heat stress or sleep deprivation, with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling. RJ supplementation activated oxidoreductase activity in the guts of flies, suggesting its ability to inhibit endogenous oxidative stress and maintain health, possibly in humans.

  • ORIGINAL ARTICLE
    Yan Lai, Kaiyu Li, Xingyue Liu
    Insect Science, 2024, 31(2): 613-632. https://doi.org/10.1111/1744-7917.13254
    PDF

    Chrysopidae are a family of Neuroptera of significant importance in biocontrol against agricultural pests because of their predatory larvae. Currently, the taxonomy of Chrysopidae lacks a comprehensive revision, which impedes the exploration of species diversity as well as the selection and the conservation of green lacewings as biocontrol agents. We have established a DNA barcode reference library of the Chinese green lacewings based on an approximately complete sampling (95.63%) in 25 of the 34 provincial regions in China, comprising 1 119 barcodes of 25 genera and 197 species (representing 85% genera and 43.62% species from China). Combining other 1 049 high quality green lacewing DNA barcodes, we first inferred the optimal threshold of interspecific genetic divergence (1.87%) for successful species identification in multiple simulated scenarios based on present data. We further inferred the threshold of genetic divergence (7.77%) among genera with biocontrol significance. The inference and performance of the threshold appears to be mainly associated with the completeness of sampling, the proportion of closely related species, and the analytical approaches. Six new combinations, Apertochrysa platypa (Yang & Yang, 1991) comb. nov., Apertochrysa shennongana (Yang & Wang, 1990) comb. nov., Apertochrysa pictifacialis (Yang, 1988) comb. nov., Apertochrysa helana (Yang, 1993) comb. nov., Plesiochrysa rosulata (Yang & Yang, 2002) comb. nov., and Signochrysa hainana (Yang & Yang, 1991), are proposed according to integrative species delimitation. Our library and optimal threshold will effectively facilitate the exploration of species diversity of green lacewings. Our study also provides a methodological reference in molecular delimitation of other insects.

  • LETTER TO THE EDITOR
    Petr Kočárek, Ivona Horká, Vojtěch Bonczek, Markéta Kirstová
    Insect Science, 2024, 31(3): 989-992. https://doi.org/10.1111/1744-7917.13244
    PDF
  • ORIGINAL ARTICLE
    Xian Zhang, Qiao-Ran Wang, Qian Wu, Jun Gu, Li-Hua Huang
    Insect Science, 2024, 31(3): 759-772. https://doi.org/10.1111/1744-7917.13278
    PDF

    Molting and metamorphosis are important physiological processes in insects that are tightly controlled by ecdysone receptor (EcR) through the 20-hydroxyecdysone (20E) signaling pathway. EcR is a steroid nuclear receptor (SR). Several FK506-binding proteins (FKBPs) have been identified from the mammal SR complex, and are thought to be involved in the subcellular trafficking of SR. However, their roles in insects are poorly understood. To explore whether FKBPs are involved in insect molting or metamorphosis, we injected an FKBP inhibitor (FK506) into a lepidopteran insect, Spodoptera litura, and found that molting was inhibited in 61.11% of the larvae, and that the time for larvae to pupate was significantly extended. A total of 10 FKBP genes were identified from the genome of S. litura and were clustered into 2 distinct groups, according to their subcellular localization, with FKBP13 and FKBP14 belonging to the endoplasmic reticulum (ER) group and with the other members belonging to the cytoplasmic (Cy) group. All the CyFKBPs were significantly upregulated in the prepupal or pupal stages, with the opposite being observed for the ER group members. FK506 completely blocked the transfer of EcR to the nucleus under 20E induction, and significantly downregulated the transcriptional expression of many 20E signaling genes. A similar phenomenon was observed after RNA interference of 2 CyFKBPs (FKBP45 and FKBP12b), but not for FKBP13. Taken together, our data indicate that the cytoplasmic FKBPs, especially FKBP45 and FKBP12b, mediate the nuclear localization of EcR, thereby regulating the 20E signaling and ultimately affecting molting and metamorphosis in insects.