2025-03-31 2020, Volume 12 Issue 1

  • Select all
  • Angustias Page , Ana Bravo , Cristian Suarez-Cabrera , Raquel Sanchez-Baltasar , Marta Oteo , Miguel Angel Morcillo , M. Llanos Casanova , Jose C. Segovia , Manuel Navarro , Angel Ramirez

    Odontogenic tumours are a heterogeneous group of lesions that develop in the oral cavity region and are characterized by the formation of tumoural structures that differentiate as teeth. Due to the diversity of their histopathological characteristics and clinical behaviour, the classification of these tumours is still under debate. Alterations in morphogenesis pathways such as the Hedgehog, MAPK and WNT/β-catenin pathways are implicated in the formation of odontogenic lesions, but the molecular bases of many of these lesions are still unknown. In this study, we used genetically modified mice to study the role of IKKβ (a fundamental regulator of NF-κB activity and many other proteins) in oral epithelial cells and odontogenic tissues. Transgenic mice overexpressing IKKβ in oral epithelial cells show a significant increase in immune cells in both the oral epithelia and oral submucosa. They also show changes in the expression of several proteins and miRNAs that are important for cancer development. Interestingly, we found that overactivity of IKKβ in oral epithelia and odontogenic tissues, in conjunction with the loss of tumour suppressor proteins (p53, or p16 and p19), leads to the appearance of odontogenic tumours that can be classified as ameloblastic odontomas, sometimes accompanied by foci of secondary ameloblastic carcinomas. These tumours show NF-κB activation and increased β-catenin activity. These findings may help to elucidate the molecular determinants of odontogenic tumourigenesis and the role of IKKβ in the homoeostasis and tumoural transformation of oral and odontogenic epithelia.

  • Ran Cheng , Zhiwu Wu , Mingming Li , Meiying Shao , Tao Hu

    Interleukin(IL)-1β, a pro-inflammatory cytokine, was elevated and participates in periodontitis. Not only the link between IL-1β and periodontitis was proved by clinical evidence, but also the increased IL-1β triggers a series of inflammatory reactions and promotes bone resorption. Currently, IL-1β blockage has been therapeutic strategies for autoimmune and autoinflammatory diseases such as rheumatoid arthritis, cryopyrin-associated periodic syndromes, gout and type II diabetes mellitus. It is speculated that IL-1β be a potential therapeutic target for periodontitis. The review focuses on the production, mechanism, present treatments and future potential strategies for IL-1β in periodontitis.

  • Hannah S. Hong , Jonathan Akhavan , Sung Hee Lee , Reuben H. Kim , Mo K. Kang , No-Hee Park , Ki-Hyuk Shin

    High-risk human papillomaviruses (HPVs) are involved in the development of several human cancers, including oropharyngeal squamous cell carcinomas. However, many studies have demonstrated that HPV alone is not sufficient for the oncogenic transformation of normal human epithelial cells, indicating that additional cofactors are required for the oncogenic conversion of HPV-infected cells. Inasmuch as chronic inflammation is also closely associated with carcinogenesis, we investigated the effect of chronic exposure to tumor necrosis factor α (TNFα), the major proinflammatory cytokine, on oncogenesis in two immortalized oral keratinocyte cell lines, namely, HPV16-immortalized and human telomerase reverse transcriptase (hTERT)-immortalized cells. TNFα treatment led to the acquisition of malignant growth properties in HPV16-immortalized cells, such as (1) calcium resistance, (2) anchorage independence, and (3) increased cell proliferation in vivo. Moreover, TNFα increased the cancer stem cell-like population and stemness phenotype in HPV16-immortalized cells. However, such transforming effects were not observed in hTERT-immortalized cells, suggesting an HPV-specific role in TNFα-promoted oncogenesis. We also generated hTERT-immortalized cells that express HPV16 E6 and E7. Chronic TNFα exposure successfully induced the malignant growth and stemness phenotype in the E6-expressing cells but not in the control and E7-expressing cells. We further demonstrated that HPV16 E6 played a key role in TNFα-induced cancer stemness via suppression of the stemness-inhibiting microRNAs miR-203 and miR-200c. Overexpression of miR-203 and miR-200c suppressed cancer stemness in TNFα-treated HPV16-immortalized cells. Overall, our study suggests that chronic inflammation promotes cancer stemness in HPV-infected cells, thereby promoting HPV-associated oral carcinogenesis.

  • Xue Zhang , Yuchao Li , Ziming Ge , Haijiao Zhao , Lei Miao , Yaping Pan

    The morphology of the alveolar bone at the maxillary anterior teeth in periodontitis patients was evaluated by cone-beam computed tomography (CBCT) to investigate the distribution of alveolar defects and provide guidance for clinical practice. Ninety periodontitis patients and 30 periodontally healthy individuals were selected to determine the morphology of the alveolar bone at the maxillary anterior teeth according to the degree of bone loss, tooth type, sex and age. The differences in the dimensions between periodontitis patients and healthy individuals were compared, and the distribution of alveolar bone defects was analyzed. A classification system was established regarding the sagittal positions and angulations of the teeth. The buccal residual bone was thicker and the lingual bone was thinner in the periodontitis patients than in the periodontally healthy individuals, and there were differences between the different tooth types, sexes and age subgroups. The buccal undercut was close to the alveolar ridge, while fenestration was reduced and the apical bone height was higher in periodontitis patients than in periodontally healthy individuals. The apical bone height increased with the aggravation of bone loss and age. The proportions of different sagittal positions changed with the aggravation of bone loss. Moreover, the teeth moved more buccally regarding the positions of the maxillary anterior teeth. The morphology of the alveolar bone at the maxillary anterior teeth differed between periodontitis patients and healthy individuals, and the differences were related to the degree of bone loss, tooth type, sex and age.

  • Sabine Kuchler-Bopp , Alexandre Mariotte , Marion Strub , Chrystelle Po , Aurore De Cauwer , Georg Schulz , Xavier Van Bellinghen , Florence Fioretti , François Clauss , Philippe Georgel , Nadia Benkirane-Jessel , Fabien Bornert

    Rheumatoid arthritis (RA) is an autoimmune disease affecting 1% of the world population and is characterized by chronic inflammation of the joints sometimes accompanied by extra-articular manifestations. K/BxN mice, originally described in 1996 as a model of polyarthritis, exhibit knee joint alterations. The aim of this study was to describe temporomandibular joint (TMJ) inflammation and damage in these mice. We used relevant imaging modalities, such as micro-magnetic resonance imaging (μMRI) and micro-computed tomography (μCT), as well as histology and immunofluorescence techniques to detect TMJ alterations in this mouse model. Histology and immunofluorescence for Col-I, Col-II, and aggrecan showed cartilage damage in the TMJ of K/BxN animals, which was also evidenced by μCT but was less pronounced than that seen in the knee joints. μMRI observations suggested an increased volume of the upper articular cavity, an indicator of an inflammatory process. Fibroblast-like synoviocytes (FLSs) isolated from the TMJ of K/BxN mice secreted inflammatory cytokines (IL-6 and IL-1β) and expressed degradative mediators such as matrix metalloproteinases (MMPs). K/BxN mice represent an attractive model for describing and investigating spontaneous damage to the TMJ, a painful disorder in humans with an etiology that is still poorly understood.

  • Lisha Zhu , Dan Luo , Yan Liu

    Natural bone is a mineralized biological material, which serves a supportive and protective framework for the body, stores minerals for metabolism, and produces blood cells nourishing the body. Normally, bone has an innate capacity to heal from damage. However, massive bone defects due to traumatic injury, tumor resection, or congenital diseases pose a great challenge to reconstructive surgery. Scaffold-based tissue engineering (TE) is a promising strategy for bone regenerative medicine, because biomaterial scaffolds show advanced mechanical properties and a good degradation profile, as well as the feasibility of controlled release of growth and differentiation factors or immobilizing them on the material surface. Additionally, the defined structure of biomaterial scaffolds, as a kind of mechanical cue, can influence cell behaviors, modulate local microenvironment and control key features at the molecular and cellular levels. Recently, nano/micro-assisted regenerative medicine becomes a promising application of TE for the reconstruction of bone defects. For this reason, it is necessary for us to have in-depth knowledge of the development of novel nano/micro-based biomaterial scaffolds. Thus, we herein review the hierarchical structure of bone, and the potential application of nano/micro technologies to guide the design of novel biomaterial structures for bone repair and regeneration.

  • Annie Tong , Yuh-Lit Chow , Katie Xu , Rita Hardiman , Paul Schneider , Seong-Seng Tan

    Primary molar ankylosis with infraocclusion can retard dental arch development and cause dental asymmetry. Despite its widespread prevalence, little is known about its molecular etiology and pathogenesis. To address this, RNA sequencing was used to generate transcriptomes of furcal bone from infraoccluded (n = 7) and non-infraoccluded (n = 9) primary second molars, all without succeeding biscuspids. Of the 18 529 expressed genes, 432 (2.3%) genes were differentially expressed between the two groups (false discovery rate < 0.05). Hierarchical clustering and principal component analysis showed clear separation in gene expression between infraoccluded and non-infraoccluded samples. Pathway analyses indicated that molar ankylosis is associated with the expression of genes consistent with the cellular inflammatory response and epithelial cell turnover. Independent validation using six expressed genes by immunohistochemical analysis demonstrated that the corresponding proteins are strongly expressed in the developing molar tooth germ, in particular the dental follicle and inner enamel epithelium. The descendants of these structures include the periodontal ligament, cementum, bone and epithelial rests of Malassez; tissues that are central to the ankylotic process. We therefore propose that ankylosis involves an increased inflammatory response associated with disruptions to the developmental remnants of the dental follicle and epithelial rests of Malassez.

  • Hao Xu , Liang Zhong , Jiaxin Deng , Jiakuan Peng , Hongxia Dan , Xin Zeng , Taiwen Li , Qianming Chen

    It has been reported that ACE2 is the main host cell receptor of 2019-nCoV and plays a crucial role in the entry of virus into the cell to cause the final infection. To investigate the potential route of 2019-nCov infection on the mucosa of oral cavity, bulk RNA-seq profiles from two public databases including The Cancer Genome Atlas (TCGA) and Functional Annotation of The Mammalian Genome Cap Analysis of Gene Expression (FANTOM5 CAGE) dataset were collected. RNA-seq profiling data of 13 organ types with para-carcinoma normal tissues from TCGA and 14 organ types with normal tissues from FANTOM5 CAGE were analyzed in order to explore and validate the expression of ACE2 on the mucosa of oral cavity. Further, single-cell transcriptomes from an independent data generated in-house were used to identify and confirm the ACE2-expressing cell composition and proportion in oral cavity. The results demonstrated that the ACE2 expressed on the mucosa of oral cavity. Interestingly, this receptor was highly enriched in epithelial cells of tongue. Preliminarily, those findings have explained the basic mechanism that the oral cavity is a potentially high risk for 2019-nCoV infectious susceptibility and provided a piece of evidence for the future prevention strategy in dental clinical practice as well as daily life.

  • Xian Peng , Xin Xu , Yuqing Li , Lei Cheng , Xuedong Zhou , Biao Ren

    A novel β-coronavirus (2019-nCoV) caused severe and even fetal pneumonia explored in a seafood market of Wuhan city, Hubei province, China, and rapidly spread to other provinces of China and other countries. The 2019-nCoV was different from SARS-CoV, but shared the same host receptor the human angiotensin-converting enzyme 2 (ACE2). The natural host of 2019-nCoV may be the bat Rhinolophus affinis as 2019-nCoV showed 96.2% of whole-genome identity to BatCoV RaTG13. The person-to-person transmission routes of 2019-nCoV included direct transmission, such as cough, sneeze, droplet inhalation transmission, and contact transmission, such as the contact with oral, nasal, and eye mucous membranes. 2019-nCoV can also be transmitted through the saliva, and the fetal–oral routes may also be a potential person-to-person transmission route. The participants in dental practice expose to tremendous risk of 2019-nCoV infection due to the face-to-face communication and the exposure to saliva, blood, and other body fluids, and the handling of sharp instruments. Dental professionals play great roles in preventing the transmission of 2019-nCoV. Here we recommend the infection control measures during dental practice to block the person-to-person transmission routes in dental clinics and hospitals.

  • Xiao Han , Ruzhuang Yang , Haoqing Yang , Yangyang Cao , Nannan Han , Chen Zhang , Ruitang Shi , Zhengting Zhang , Zhipeng Fan

    Drug-induced gingival overgrowth (DIGO) is recognized as a side effect of nifedipine (NIF); however, the underlying molecular mechanisms remain unknown. In this study, we found that overexpressed miR-4651 inhibits cell proliferation and induces G0/G1-phase arrest in gingival mesenchymal stem cells (GMSCs) with or without NIF treatment. Furthermore, sequential window acquisition of all theoretical mass spectra (SWATH-MS) analysis, bioinformatics analysis, and dual-luciferase report assay results confirmed that high-mobility group AT-hook 2 (HMGA2) is the downstream target gene of miR-4651. Overexpression of HMGA2 enhanced GMSC proliferation and accelerated the cell cycle with or without NIF treatment. The present study demonstrates that miR-4651 inhibits the proliferation of GMSCs and arrests the cell cycle at the G0/G1 phase by upregulating cyclin D and CDK2 while downregulating cyclin E through inhibition of HMGA2 under NIF stimulation. These findings reveal a novel mechanism regulating DIGO progression and suggest the potential of miR-4651 and HMGA2 as therapeutic targets.

  • Ruoshi Xu , Bomiao Cui , Xiaobo Duan , Ping Zhang , Xuedong Zhou , Quan Yuan

    2019-nCoV epidemic was firstly reported at late December of 2019 and has caused a global outbreak of COVID-19 now. Saliva, a biofluid largely generated from salivary glands in oral cavity, has been reported 2019-nCoV nucleic acid positive. Besides lungs, salivary glands and tongue are possibly another hosts of 2019-nCoV due to expression of ACE2. Close contact or short-range transmission of infectious saliva droplets is a primary mode for 2019-nCoV to disseminate as claimed by WHO, while long-distance saliva aerosol transmission is highly environment dependent within indoor space with aerosol-generating procedures such as dental practice. So far, no direct evidence has been found that 2019-nCoV is vital in air flow for long time. Therefore, to prevent formation of infectious saliva droplets, to thoroughly disinfect indoor air and to block acquisition of saliva droplets could slow down 2019-nCoV dissemination. This review summarizes diagnostic value of saliva for 2019-nCoV, possibly direct invasion into oral tissues, and close contact transmission of 2019-nCoV by saliva droplets, expecting to contribute to 2019-nCoV epidemic control.

  • Jin Xiao , Kevin A. Fiscella , Steven R. Gill

    The human microbiome functions as an intricate and coordinated microbial network, residing throughout the mucosal surfaces of the skin, oral cavity, gastrointestinal tract, respiratory tract, and reproductive system. The oral microbiome encompasses a highly diverse microbiota, consisting of over 700 microorganisms, including bacteria, fungi, and viruses. As our understanding of the relationship between the oral microbiome and human health has evolved, we have identified a diverse array of oral and systemic diseases associated with this microbial community, including but not limited to caries, periodontal diseases, oral cancer, colorectal cancer, pancreatic cancer, and inflammatory bowel syndrome. The potential predictive relationship between the oral microbiota and these human diseases suggests that the oral cavity is an ideal site for disease diagnosis and development of rapid point-of-care tests. The oral cavity is easily accessible with a non-invasive collection of biological samples. We can envision a future where early life salivary diagnostic tools will be used to predict and prevent future disease via analyzing and shaping the infant’s oral microbiome. In this review, we present evidence for the establishment of the oral microbiome during early childhood, the capability of using childhood oral microbiome to predict future oral and systemic diseases, and the limitations of the current evidence.

  • Lingjun Li , Han Jiang , Rixin Chen , Jing Zhou , Yin Xiao , Yangheng Zhang , Fuhua Yan

    Efforts to control inflammation and achieve better tissue repair in the treatment of periodontitis have been ongoing for years. Human β-defensin 3, a broad-spectrum antimicrobial peptide has been proven to have a variety of biological functions in periodontitis; however, relatively few reports have addressed the effects of human periodontal ligament cells (hPDLCs) on osteogenic differentiation. In this study, we evaluated the osteogenic effects of hPDLCs with an adenoviral vector encoding human β-defensin 3 in an inflammatory microenvironment. Then human β-defensin 3 gene-modified rat periodontal ligament cells were transplanted into rats with experimental periodontitis to observe their effects on periodontal bone repair. We found that the human β-defensin 3 gene-modified hPDLCs presented with high levels of osteogenesis-related gene expression and calcium deposition. Furthermore, the p38 MAPK pathway was activated in this process. In vivo, human β-defensin 3 gene-transfected rat PDLCs promoted bone repair in SD rats with periodontitis, and the p38 mitogen-activated protein kinase (MAPK) pathway might also have been involved. These findings demonstrate that human β-defensin 3 accelerates osteogenesis and that human β-defensin 3 gene modification may offer a potential approach to promote bone repair in patients with periodontitis.

  • Ruilin Zhang , Junhui Li , Gongchen Li , Fujun Jin , Zuolin Wang , Rui Yue , Yibin Wang , Xiaogang Wang , Yao Sun

    Activation of osteoclasts during orthodontic tooth treatment is a prerequisite for alveolar bone resorption and tooth movement. However, the key regulatory molecules involved in osteoclastogenesis during this process remain unclear. Long noncoding RNAs (lncRNAs) are a newly identified class of functional RNAs that regulate cellular processes, such as gene expression and translation regulation. Recently, lncRNAs have been reported to be involved in osteogenesis and bone formation. However, as the most abundant noncoding RNAs in vivo, the potential regulatory role of lncRNAs in osteoclast formation and bone resorption urgently needs to be clarified. We recently found that the lncRNA Nron (long noncoding RNA repressor of the nuclear factor of activated T cells) is highly expressed in osteoclast precursors. Nron is downregulated during osteoclastogenesis and bone ageing. To further determine whether Nron regulates osteoclast activity during orthodontic treatment, osteoclastic Nron transgenic (Nron cTG) and osteoclastic knockout (Nron CKO) mouse models were generated. When Nron was overexpressed, the orthodontic tooth movement rate was reduced. In addition, the number of osteoclasts decreased, and the activity of osteoclasts was inhibited. Mechanistically, Nron controlled the maturation of osteoclasts by regulating NFATc1 nuclear translocation. In contrast, by deleting Nron specifically in osteoclasts, tooth movement speed increased in Nron CKO mice. These results indicate that lncRNAs could be potential targets to regulate osteoclastogenesis and orthodontic tooth movement speed in the clinic in the future.

  • Boyu Tang , Tao Gong , Yujia Cui , Lingyun Wang , Chao He , Miao Lu , Jiamin Chen , Meiling Jing , Anqi Zhang , Yuqing Li

    The oral microbial community is widely regarded as a latent reservoir of antibiotic resistance genes. This study assessed the molecular epidemiology, susceptibility profile, and resistance mechanisms of 35 methicillin-resistant Staphylococcus epidermidis (MRSE) strains isolated from the dental plaque of a healthy human population. Broth microdilution minimum inhibitory concentrations (MICs) revealed that all the isolates were nonsusceptible to oxacillin and penicillin G. Most of them were also resistant to trimethoprim (65.7%) and erythromycin (54.3%). The resistance to multiple antibiotics was found to be largely due to the acquisition of plasmid-borne genes. The mecA and dfrA genes were found in all the isolates, mostly dfrG (80%), aacA-aphD (20%), aadD (28.6%), aphA3 (22.9%), msrA (5.7%), and the ermC gene (14.3%). Classical mutational mechanisms found in these isolates were mainly efflux pumps such as qacA (31.4%), qacC (25.7%), tetK (17.1%), and norA (8.6%). Multilocus sequence type analysis revealed that sequence type 59 (ST59) strains comprised 71.43% of the typed isolates, and the eBURST algorithm clustered STs into the clonal complex 2-II(CC2-II). The staphyloccoccal cassette chromosome mec (SCCmec) type results showed that 25 (71.43%) were assigned to type IV. Moreover, 88.66% of the isolates were found to harbor six or more biofilm-associated genes. The aap, atlE, embp, sdrF, and IS256 genes were detected in all 35 isolates. This research demonstrates that biofilm-positive multiple-antibiotic-resistant ST59-SCCmec IV S. epidermidis strains exist in the dental plaque of healthy people and may be a potential risk for the transmission of antibiotic resistance.

  • Zi Mei , Junwen Huang , Bin Qiao , Alfred King-yin Lam

    With the understanding of the complex interaction between the tumour microenvironment and immunotherapy, there is increasing interest in the role of immune regulators in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of T cells and immune checkpoint molecules is important for the immune response to cancers. Immune checkpoint molecules include cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), T-cell immunoglobulin mucin protein 3 (TIM-3), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and immunoreceptor tyrosine-based inhibitory motif (TIGIT), glucocorticoid-induced tumour necrosis factor receptor (GITR) and V-domain Ig suppressor of T cell activation (VISTA). Many clinical trials using checkpoint inhibitors, as both monotherapies and combination therapies, have been initiated targeting these immune checkpoint molecules. This review summarizes the functional mechanism and use of various immune checkpoint molecules in HNSCC, including monotherapies and combination therapies, and provides better treatment options for patients with HNSCC.

  • Wenjing Liu , Yujia Cui , Jieya Wei , Jianxun Sun , Liwei Zheng , Jing Xie

    Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions (GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions. Knowledge of this pattern of cell–cell communication is required for a better understanding of oral diseases. With the ever-increasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.

  • Yujia Cui , Jing Xie , Yujie Fu , Chuwen Li , Liwei Zheng , Dingming Huang , Changchun Zhou , Jianxun Sun , Xuedong Zhou

    Once pulp necrosis or apical periodontitis occurs on immature teeth, the weak root and open root apex are challenging to clinicians. Berberine (BBR) is a potential medicine for bone disorders, therefore, we proposed to apply BBR in root canals to enhance root repair in immature teeth. An in vivo model of immature teeth with apical periodontitis was established in rats, and root canals were filled with BBR, calcium hydroxide or sterilized saline for 3 weeks. The shape of the roots was analyzed by micro-computed tomography and histological staining. In vitro, BBR was introduced into stem cells from apical papilla (SCAPs). Osteogenic differentiation of stem cells from apical papilla was investigated by alkaline phosphatase activity, mineralization ability, and gene expression of osteogenic makers. The signaling pathway, which regulated the osteogenesis of SCAPs was evaluated by quantitative real time PCR, Western blot analysis, and immunofluorescence. In rats treated with BBR, more tissue was formed, with longer roots, thicker root walls, and smaller apex diameters. In addition, we found that BBR promoted SCAPs osteogenesis in a time-dependent and concentration-dependent manner. BBR induced the expression of β-catenin and enhanced β-catenin entering into the nucleus, to up-regulate more runt-related nuclear factor 2 downstream. BBR enhanced root repair in immature teeth with apical periodontitis by activating the canonical Wnt/β-catenin pathway in SCAPs.

  • Yangfan Liu , Miao Yang , Jingjing Luo , Hongmei Zhou

    Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.

  • Qingyue Xiao , Yuning Zhang , Xingying Qi , Yaqian Chen , Rui Sheng , Ruoshi Xu , Quan Yuan , Chenchen Zhou

    As a member of the AFF (AF4/FMR2) family, AFF4 is a transcription elongation factor that is a component of the super elongation complex. AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling. Here, we investigated the effect of AFF4 on human dental follicle cells (DFCs) in osteogenic differentiation. In this study, we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase (ALP) activity and impaired mineralization. In addition, the expression of osteogenic-related genes (DLX5, SP7, RUNX2 and BGLAP) was significantly downregulated. In contrast, lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs. Mechanistically, we found that both the mRNA and protein levels of ALKBH1, a critical regulator of epigenetics, changed in accordance with AFF4 expression levels. Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation. Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.

  • Bing Shi , Hanyao Huang

    Surgeons need to understand the effects of the nasal cartilage on facial morphology, the function of both soft tissues and hard tissues and nasal function when performing nasal surgery. In nasal cartilage-related surgery, the main goals for clinical research should include clarification of surgical goals, rationalization of surgical methods, precision and personalization of surgical design and preparation and improved convenience of doctor–patient communication. Computational technology has become an effective way to achieve these goals. Advances in three-dimensional (3D) imaging technology will promote nasal cartilage-related applications, including research on computational modelling technology, computational simulation technology, virtual surgery planning and 3D printing technology. These technologies are destined to revolutionize nasal surgery further. In this review, we summarize the advantages, latest findings and application progress of various computational technologies used in clinical nasal cartilage-related work and research. The application prospects of each technique are also discussed.

  • Qiang Li , Fangli Lu , Tianxuan Chen , Ke Zhang , Yuping Lu , Xiaocong Li , Yingying Wang , Ling Liu , Qing Tian , Fu Xiong , Dong Chen

    A splicing mutation in VPS4B can cause dentin dysplasia type I (DD-I), a hereditary autosomal-dominant disorder characterized by rootless teeth, the etiology of which is genetically heterogeneous. In our study, dental follicle cells (DFCs) were isolated and cultured from a patient with DD-I and compared with those from an age-matched, healthy control. In a previous study, this DD-I patient was confirmed to have a loss-of-function splicing mutation in VPS4B (IVS7 + 46C > G). The results from this study showed that the isolated DFCs were vimentin-positive and CK14-negative, indicating that the isolated cells were derived from the mesenchyme. DFCs harboring the VPS4B mutation had a significantly higher proliferation rate from day 3 to day 8 than control DFCs, indicating that VPS4B is involved in cell proliferation. The cells were then replenished with osteogenic medium to investigate how the VPS4B mutation affected osteogenic differentiation. Induction of osteogenesis, detected by alizarin red and alkaline phosphatase staining in vitro, was decreased in the DFCs from the DD-I patient compared to the control DFCs. Furthermore, we also found that the VPS4B mutation in the DD-I patient downregulated the expression of osteoblast-related genes, such as ALP, BSP, OCN, RUNX2, and their encoded proteins. These outcomes confirmed that the DD-I-associated VPS4B mutation could decrease the capacity of DFCs to differentiate during the mineralization process and may also impair physiological root formation and bone remodeling. This might provide valuable insights and implications for exploring the pathological mechanisms underlying DD-I root development.

  • Mohit Sharma , Felipe Paiva Fonseca , Keith D. Hunter , Raghu Radhakrishnan

    The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.

  • Qunxing Li , Xiangqi Liu , Dikan Wang , Yanqiong Wang , Huanzi Lu , Shuqiong Wen , Juan Fang , Bin Cheng , Zhi Wang

    Tertiary lymphoid structures (TLS) are ectopic lymphoid structures in cancers that are largely associated with favourable prognosis. However, the prognostic value of TLSs in oral squamous cell carcinoma (OSCC) is largely unknown, and the association between tumour infiltrating lymphocytes (TILs) and TLSs has been rarely explored in OSCC. In this study, associated markers of TLS, including peripheral node address (PNAd) in high endothelial venules, CD20 in B cells and CD3 in T cells, were examined in 168 OSCC patients, and survival analysis was performed between TLS-positive and TLS-negative cohorts. We detected the presence of TILs by staining CD8+ cytotoxic T cells and CD57+ NK cells as well. TLSs appeared as highly organized structures in 45 (26.8%) cases. TLS-positive patients had a better 5-year overall survival (OS) rate (88.9% vs. 56.1%, P < 0.001) and relapse-free survival (RFS) rate (88.9% vs. 63.4%, P = 0.002). Moreover, the presence of TLS was an independent prognostic factor for both the 5-year OS rate (hazard ratio [HR] = 3.784; 95% confidence interval [CI], 1.498–9.562) and RFS rate (HR = 3.296; 95% CI, 1.279–8.490) in multivariate analysis. Furthermore, a higher density of CD8+ T cells and CD57+ NK cells was found in TLS-positive sections than in TLS-negative counterparts (P < 0.001), and their combination provided a higher predictive accuracy (AUC = 0.730; 95% CI, 0.654–0.805). In conclusion, our results suggest that TLS is an independent positive prognostic factor for OSCC patients. These findings provide a theoretical basis for the future diagnostic and therapeutic value of TLSs in OSCC treatment.

  • Qianju Wu , Xiao Wang , Fei Jiang , Ziyuan Zhu , Jin Wen , Xinquan Jiang

    Bone tissue engineering has emerged as a promising alternative therapy for patients who suffer bone fractures or defects caused by trauma, congenital diseases or tumours. However, the reconstruction of bone defects combined with osteoporosis remains a great challenge for clinicians and researchers. Based on our previous study, Ca–Si-based bioceramics (MSCs) showed enhanced bone formation capabilities under normal conditions, and strontium was demonstrated to be therapeutic in promoting bone quality in osteoporosis patients. Therefore, in the present study, we attempted to enlarge the application range of MSCs with Sr incorporation in an osteoporotic bone regeneration model to evaluate whether Sr could assist in regeneration outcomes. In vitro readout suggested that Sr-incorporated MSC scaffolds could enhance the expression level of osteogenic and angiogenic markers of osteoporotic bone mesenchymal stem cells (OVX BMSCs). Animal experiments showed a larger new bone area; in particular, there was a tendency for blood vessel formation to be enhanced in the Sr-MSC scaffold group, showing its positive osteogenic capacity in bone regeneration. This study systematically illustrated the effective delivery of a low-cost therapeutic Sr agent in an osteoporotic model and provided new insight into the treatment of bone defects in osteoporosis patients.

  • Jun Li , Kaige Ma , Dan Yi , Chun-do Oh , Di Chen

    Orofacial pain or tenderness is a primary symptom associated with temporomandibular joint (TMJ) disorders (TMDs). To understand the pathological mechanisms underlying TMDs, several mouse models have been developed, including mechanical stimulus-induced TMD and genetic mouse models. However, a lack of feasible approaches for assessing TMD-related nociceptive behaviours in the orofacial region of mice has hindered the in-depth study of TMD-associated mechanisms. This study aimed to explore modifications of three existing methods to analyse nociceptive behaviours using two TMD mouse models: (1) mechanical allodynia was tested using von Frey filaments in the mouse TMJ region by placing mice in specially designed chambers; (2) bite force was measured using the Economical Load and Force (ELF) system; and (3) spontaneous feeding behaviour tests, including eating duration and frequency, were analysed using the Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS). We successfully assessed changes in nociceptive behaviours in two TMD mouse models, a unilateral anterior crossbite (UAC)-induced TMD mouse model and a β-catenin conditional activation mouse model. We found that the UAC model and β-catenin conditional activation mouse model were significantly associated with signs of increased mechanical allodynia, lower bite force, and decreased spontaneous feeding behaviour, indicating manifestations of TMD. These behavioural changes were consistent with the cartilage degradation phenotype observed in these mouse models. Our studies have shown reliable methods to analyse nociceptive behaviours in mice and may indicate that these methods are valid to assess signs of TMD in mice.

  • Ailin Hou , Jun Luo , Min Zhang , Jianshu Li , Wenlin Chu , Kunneng Liang , Jiaojiao Yang , Jiyao Li

    Tooth enamel is prone to be attacked by injurious factors, leading to a de/remineralization imbalance. To repair demineralized enamel and prevent pulp inflammation caused by biofilm accumulation, measures are needed to promote remineralization and inhibit bacterial adhesion on the tooth surface. An innovative material, poly (aspartic acid)-polyethylene glycol (PASP-PEG), was designed and synthesized to construct a mineralizing and anti-adhesive surface that could be applied to repair demineralized enamel. A cytotoxicity assay revealed the low cytotoxicity of synthesized PASP-PEG. Adsorption results demonstrated that PASP-PEG possesses a high binding affinity to the hydroxyapatite (HA)/tooth surface. In vitro experiments and scanning electron microscopy (SEM) demonstrated a strong capacity of PASP-PEG to induce in situ remineralization and direct the oriented growth of apatite nanocrystals. Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD) and Vickers hardness tests demonstrated that minerals induced by PASP-PEG were consistent with healthy enamel in Ca/P ratio, crystal form and surface micro-hardness. Contact angle tests and bacterial adhesion experiments demonstrated that PASP-PEG yielded a strong anti-adhesive effect. In summary, PASP-PEG could achieve dual effects for enamel repair and anti-adhesion of bacteria, thereby widening its application in enamel repair.

  • Mengru Xie , Qingming Tang , Shaoling Yu , Jiwei Sun , Feng Mei , Jiajia Zhao , Lili Chen

    Cardiovascular disease is still the leading cause of mortality worldwide. Vascular endothelial dysfunction is viewed as the initial step of most cardiovascular diseases. Many studies have indicated that periodontal pathogens, especially Porphyromonas gingivalis, are closely correlated with vascular endothelial homeostasis, but the function of P. gingivalis and the underlying mechanisms are still elusive. To illuminate the effects and elucidate the mechanisms of P. gingivalis on endothelial structural integrity, we developed P. gingivalis infection models in vivo and in vitro. Endothelial cell proliferation, differentiation and apoptosis were detected. Here, we showed that P. gingivalis can impair endothelial integrity by inhibiting cell proliferation and inducing endothelial mesenchymal transformation and apoptosis of endothelial cells, which reduce the cell levels and cause the endothelium to lose its ability to repair itself. A mechanistic analysis showed that TLR antagonist or NF-κB signalling inhibitor can largely rescue the damaged integrity of the endothelium caused by P. gingivalis, suggesting that TLR-NF-κB signalling plays a vital role in vascular endothelial homeostasis destroyed by P. gingivalis. These results suggest a potential intervention method for the prevention and treatment of cardiovascular disease.

  • Qiang Li , Qian Zhang , Xiaoying Zou , Lin Yue

    The aim of this study was to compare the efficiency of four final irrigation protocols in smear layer removal and bacterial inhibition in root canal systems. Thirty roots inoculated with Enterococcus faecalis were prepared with ProTaper Universal files. The teeth were disinfected by conventional needle irrigation, sonic agitation using the EndoActivator device, passive ultrasonic irrigation, or an M3 Max file. Teeth with no root canal preparation served as blank controls for the establishment of the infection baseline. Teeth with preparation but no final irrigation served as a post-instrumentation baseline. After the final irrigation, the teeth were sectioned in half. One half of each tooth was examined by scanning electron microscopy (SEM) to assess smear layer removal using a five-point scale. The other half was examined by confocal laser scanning microscopy (CLSM) using the LIVE/DEAD BackLight bacterial viability kit to evaluate the depth of bacterial survival in dentinal tubules. SEM analysis revealed no significant difference in smear layer removal throughout the whole canal among the EA, PUI, and M3 Max groups (P > 0.05). CLSM revealed that PUI achieved the greatest bacterial inhibition depth in the coronal ((174.27 ± 31.63) μm), middle ((160.94 ± 37.77) μm), and apical ((119.53 ± 28.49) μm) thirds of the canal (all P < 0.05 vs. other groups). According to this comprehensive SEM and CLSM evaluation, PUI appears to have the best infection control ability in root canal systems.

  • Lina He , Xiangyu Sun , Zhijie Liu , Yanfen Qiu , Yumei Niu

    Medication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of bone-modifying agents and inhibits angiogenesis agents. Although the pathogenesis of MRONJ is not entirely clear, multiple factors may be involved in specific microenvironments. The TGF-β1 signalling pathway may have a key role in the development of MRONJ. According to the clinical stage, multiple variables should be considered when selecting the most appropriate treatment. Therefore, the prevention and management of treatment of MRONJ should be conducted in patient-centred multidisciplinary team collaborative networks with oncologists, dentists and dental specialists. This would comprise a closed responsibility treatment loop with all benefits directed to the patient. Thus, in the present review, we aimed to summarise the pathogenesis, risk factors, imaging features, clinical staging, therapeutic methods, prevention and treatment strategies associated with MRONJ, which may provide a reference that can inform preventive strategies and improve the quality of life for patients in the future.

  • Somasundaram Prasadh , Vyasaraj Manakari , Gururaj Parande , Raymond Chung Wen Wong , Manoj Gupta

    The present study investigates Mg-SiO2 nanocomposites as biodegradable implants for orthopedic and maxillofacial applications. The effect of presence and progressive addition of hollow silica nanoparticles (0.5, 1, and 1.5) vol.% on the microstructural, mechanical, degradation, and biocompatibility response of pure Mg were investigated. Results suggest that the increased addition of hollow silica nanoparticles resulted in a progressive increase in yield strength and ultimate compressive strength with Mg-1.5 vol.% SiO2 exhibiting superior enhancement. The response of Mg-SiO2 nanocomposites under the influence of Hanks’ balanced salt solution revealed that the synthesized composites revealed lower corrosion rates, indicating rapid dynamic passivation when compared with pure Mg. Furthermore, cell adhesion and proliferation of osteoblast cells were noticeably higher than pure Mg with the addition of 1 vol.% SiO2 nanoparticle. The biocompatibility and the in vitro biodegradation of the Mg-SiO2 nanocomposites were influenced by the SiO2 content in pure Mg with Mg-0.5 vol.% SiO2 nanocomposite exhibiting the best corrosion resistance and biocompatibility when compared with other nanocomposites. Enhancement in mechanical, corrosion, and biocompatibility characteristics of Mg-SiO2 nanocomposites developed in this study are also compared with properties of other metallic biomaterials used in alloplastic mandibular reconstruction in a computational model.

  • Mengge Feng , Yulan Wang , Peng Zhang , Qin Zhao , Shimin Yu , Kailun Shen , Richard J. Miron , Yufeng Zhang

    Platelet-rich fibrin (PRF) has been widely used owing to its ability to stimulate tissue regeneration. To date, few studies have described the antibacterial properties of PRF. Previously, PRF prepared by horizontal centrifugation (H-PRF) was shown to contain more immune cells than leukocyte- and platelet-rich fibrin (L-PRF). This study aimed to compare the antimicrobial effects of PRFs against Staphylococcus aureus and Escherichia coli in vitro and to determine whether the antibacterial effects correlated with the number of immune cells. Blood samples were obtained from eight healthy donors to prepare L-PRF and H-PRF. The sizes and weights of L-PRF and H-PRF were first evaluated, and their antibacterial effects against S. aureus and E. coli were then tested in vitro using the inhibition ring and plate-counting test methods. Flow-cytometric analysis of the cell components of L-PRF and H-PRF was also performed. No significant differences in size or weight were observed between the L-PRF and H-PRF groups. The H-PRF group contained more leukocytes than the L-PRF group. While both PRFs had notable antimicrobial activity against S. aureus and E. coli, H-PRF demonstrated a significantly better antibacterial effect than L-PRF. Furthermore, the antimicrobial ability of the PRF solid was less efficient than that of wet PRF. In conclusion, H-PRF exhibited better antibacterial activity than L-PRF, which might have been attributed to having more immune cells.

  • Anqi Liu , Shanshan Jin , Cuicui Fu , Shengji Cui , Ting Zhang , Lisha Zhu , Yu Wang , Steve G. F. Shen , Nan Jiang , Yan Liu

    Macrophages play an important role in material-related immune responses and bone formation, but the functionality of macrophage-derived extracellular vesicles (EVs) in material-mediated bone regeneration is still unclear. Here, we evaluated intracellular communication through small extracellular vesicles (sEVs) and its effects on endogenous bone regeneration mediated by biomimetic intrafibrillarly mineralized collagen (IMC). After implantation in the bone defect area, IMC generated more neobone and recruited more mesenchymal stem cells (MSCs) than did extrafibrillarly mineralized collagen (EMC). More CD63+CD90+ and CD63+CD163+ cells were detected in the defect area in the IMC group than in the EMC group. To determine the functional roles of sEVs, extracellular vesicles from macrophages cultured on different mineralized collagen were isolated, and they showed no morphological differences. However, macrophage-derived sEVs in the IMC group showed an enhanced Young’s modulus and exerted beneficial effects on the osteogenic differentiation of bone marrow MSCs by increasing the expression of the osteoblastic differentiation markers BMP2, BGLAP, COL1, and OSX and calcium nodule formation. Mechanistically, sEVs from IMC-treated macrophages facilitated MSC osteogenesis through the BMP2/Smad5 pathway, and blocking sEV secretion with GW4869 significantly impaired MSC proliferative, immunomodulative and osteogenic potential. Taken together, these findings show that macrophage-derived sEVs may serve as an emerging functional tool in biomaterial-mediated endogenous bone regeneration.

  • Xinchen Liu , Lin Meng , Xing Li , Daowei Li , Qilin Liu , Yumeng Chen , Xiangwei Li , Wenhuan Bu , Hongchen Sun

    Epithelial–mesenchymal transition (EMT) is involved in both physiological and pathological processes. EMT plays an essential role in the invasion, migration and metastasis of tumours. Autophagy has been shown to regulate EMT in a variety of cancers but not in head and neck squamous cell carcinoma (HNSCC). Herein, we investigated whether autophagy also regulates EMT in HNSCC. Analyses of clinical data from three public databases revealed that higher expression of fibronectin-1 (FN1) correlated with poorer prognosis and higher tumour pathological grade in HNSCC. Data from SCC-25 cells demonstrated that rapamycin and Earle’s balanced salt solution (EBSS) promoted autophagy, leading to increased FN1 degradation, while 3-methyladenine (3-MA), bafilomycin A1 (Baf A1) and chloroquine (CQ) inhibited autophagy, leading to decreased FN1 degradation. On the other hand, autophagic flux was blocked in BECN1 mutant HNSCC Cal-27 cells, and rapamycin did not promote autophagy in Cal-27 cells; also in addition, FN1 degradation was inhibited. Further, we identified FN1 degradation through the lysosome-dependent degradation pathway using the proteasome inhibitor MG132. Data from immunoprecipitation assays also showed that p62/SQSTM1 participated as an autophagy adapter in the autophagy–lysosome pathway of FN1 degradation. Finally, data from immunoprecipitation assays demonstrated that the interaction between p62 and FN1 was abolished in p62 mutant MCF-7 and A2780 cell lines. These results indicate that autophagy significantly promotes the degradation of FN1. Collectively, our findings clearly suggest that FN1, as a marker of EMT, has adverse effects on HNSCC and elucidate the autophagy–lysosome degradation mechanism of FN1.

  • Cita Nottmeier , Maximilian G. Decker , Julia Luther , Simon von Kroge , Bärbel Kahl-Nieke , Michael Amling , Thorsten Schinke , Julian Petersen , Till Koehne

    Coffin–Lowry–Syndrome (CLS) is a X-linked mental retardation characterized by skeletal dysplasia and premature tooth loss. We and others have previously demonstrated that the ribosomal S6 kinase RSK2, mutated in CLS, is essential for bone and cementum formation; however, it remains to be established whether RSK2 plays also a role in mechanically induced bone remodeling during orthodontic tooth movement (OTM). We, therefore, performed OTM in wild-type (WT) mice and Rsk2-deficient mice using Nitinol tension springs that were fixed between the upper left molars and the incisors. The untreated contralateral molars served as internal controls. After 12 days of OTM, the jaws were removed and examined by micro-computed tomography (µCT), decalcified histology, and immunohistochemistry. Our analysis of the untreated teeth confirmed that the periodontal phenotype of Rsk2-deficient mice is characterized by alveolar bone loss and hypoplasia of root cementum. Quantification of OTM using µCT revealed that OTM was more than two-fold faster in Rsk2-deficient mice as compared to WT. We also observed that OTM caused alveolar bone loss and root resorptions in WT and Rsk2-deficient mice. However, quantification of these orthodontic side effects revealed no differences between WT and Rsk2-deficient mice. Taken together, Rsk2 loss-of-function accelerates OTM in mice without causing more side effects.

  • Chia-Yu Chen , David. M. Kim , Cliff Lee , John Da Silva , Shigemi Nagai , Toshiki Nojiri , Masazumi Nagai

    The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen (Col-I) from TiO2 nanotubes (NT-EPF surface). We hypothesized that the NT-EPF surface would play bifunctional roles in stimulating platelet-mediated fibroblast recruitment and anchoring fibroblast-derived Col-I to form a perpendicular collagen assembly, mimicking the connective tissue attachment around natural teeth for the long-term maintenance of dental implants. Ti surface modification was accomplished in two steps. First, TiO2 nanotubes (NT) array was fabricated via anodization. Diameters and depths of NTs were controlled by applied voltage and duration. Subsequently, an electrophoretic fusion (EPF) method was applied to fuse Col-I into nanotube arrays in a perpendicular fashion. Surface wettability was assessed by contact angle measurement. The bioactivity of modified TiO2 surfaces was evaluated in terms of NIH3T3 fibroblast attachment, platelet activation, and collagen extension. Early attachment, aggregation, and activation of platelets as well as release of platelet-related growth factors were demonstrated on NT-EPF surfaces. Platelet-mediated NIH3T3 cells migration toward NT-EPF was significantly increased and the attached cells showed a typical fibrous morphology with elongated spindle shape. A direct linkage between pseudopod-like processes of fibroblasts to NT-EPF surfaces was observed. Furthermore, the engineered EPF collagen protrusion linked with cell-derived collagen in a perpendicular fashion. Within the limitation of this in vitro study, the TiO2 nanotube with perpendicular Col-I surface (NT-EPF) promoted better cell attachment, induced a strong platelet activation which suggested the ability to create a more robust soft tissue seal.

  • Yu Xie , Songhang Li , Tianxu Zhang , Chao Wang , Xiaoxiao Cai

    Guided bone regeneration (GBR) is an effective and simple method for bone augmentation, which is often used to reconstruct the alveolar ridge when the bone defect occurs in the implant area. Titanium mesh has expanded the indications of GBR technology due to its excellent mechanical properties and biocompatibility, so that the GBR technology can be used to repair alveolar ridges with larger bone defects, and can obtain excellent and stable bone augmentation results. Currently, GBR with titanium mesh has various clinical applications, including different clinical procedures. Bone graft materials, titanium mesh covering methods, and titanium mesh fixing methods are also optional. Moreover, the research of GBR with titanium mesh has led to multifarious progresses in digitalization and material modification. This article reviews the properties of titanium mesh and the difference of titanium mesh with other barrier membranes; the current clinical application of titanium mesh in bone augmentation; common complications and management and prevention methods in the application of titanium mesh; and research progress of titanium mesh in digitization and material modification. Hoping to provide a reference for further improvement of titanium mesh in clinical application and related research of titanium mesh.

  • Cheng Zhang , Tiancheng Li , Chenchen Zhou , Li Huang , Yuyu Li , Han Wang , Peipei Duan , Shujuan Zou , Li Mei

    Periodontitis patients are at risk of alveolar bone loss during orthodontic treatment. The aim of this study was to investigate whether intermittent parathyroid hormone (1–34) treatment (iPTH) could reduce alveolar bone loss during orthodontic tooth movement (OTM) in individuals with periodontitis and the underlying mechanism. A rat model of OTM in the context of periodontitis was established and alveolar bone loss was observed. The control, iPTH and iPTH + stattic groups received injections of vehicle, PTH and vehicle, or PTH and the signal transducer and activator of transcription 3 (STAT3) inhibitor stattic, respectively. iPTH prevented alveolar bone loss by enhancing osteogenesis and suppressing bone resorption in the alveolar bone during OTM in rats with periodontitis. This effect of iPTH was along with STAT3 activation and reduced by a local injection of stattic. iPTH promoted osteoblastic differentiation and might further regulate the Wnt/β-catenin pathway in a STAT3-dependent manner. The findings of this study suggest that iPTH might reduce alveolar bone loss during OTM in rats with periodontitis through STAT3/β-catenin crosstalk.