IKKβ overexpression together with a lack of tumour suppressor genes causes ameloblastic odontomas in mice

Angustias Page , Ana Bravo , Cristian Suarez-Cabrera , Raquel Sanchez-Baltasar , Marta Oteo , Miguel Angel Morcillo , M. Llanos Casanova , Jose C. Segovia , Manuel Navarro , Angel Ramirez

International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 1

PDF
International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 1 DOI: 10.1038/s41368-019-0067-9
Article

IKKβ overexpression together with a lack of tumour suppressor genes causes ameloblastic odontomas in mice

Author information +
History +
PDF

Abstract

Odontogenic tumours are a heterogeneous group of lesions that develop in the oral cavity region and are characterized by the formation of tumoural structures that differentiate as teeth. Due to the diversity of their histopathological characteristics and clinical behaviour, the classification of these tumours is still under debate. Alterations in morphogenesis pathways such as the Hedgehog, MAPK and WNT/β-catenin pathways are implicated in the formation of odontogenic lesions, but the molecular bases of many of these lesions are still unknown. In this study, we used genetically modified mice to study the role of IKKβ (a fundamental regulator of NF-κB activity and many other proteins) in oral epithelial cells and odontogenic tissues. Transgenic mice overexpressing IKKβ in oral epithelial cells show a significant increase in immune cells in both the oral epithelia and oral submucosa. They also show changes in the expression of several proteins and miRNAs that are important for cancer development. Interestingly, we found that overactivity of IKKβ in oral epithelia and odontogenic tissues, in conjunction with the loss of tumour suppressor proteins (p53, or p16 and p19), leads to the appearance of odontogenic tumours that can be classified as ameloblastic odontomas, sometimes accompanied by foci of secondary ameloblastic carcinomas. These tumours show NF-κB activation and increased β-catenin activity. These findings may help to elucidate the molecular determinants of odontogenic tumourigenesis and the role of IKKβ in the homoeostasis and tumoural transformation of oral and odontogenic epithelia.

Cite this article

Download citation ▾
Angustias Page, Ana Bravo, Cristian Suarez-Cabrera, Raquel Sanchez-Baltasar, Marta Oteo, Miguel Angel Morcillo, M. Llanos Casanova, Jose C. Segovia, Manuel Navarro, Angel Ramirez. IKKβ overexpression together with a lack of tumour suppressor genes causes ameloblastic odontomas in mice. International Journal of Oral Science, 2020, 12(1): 1 DOI:10.1038/s41368-019-0067-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hinz M, Scheidereit C. The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep., 2014, 15: 46-61.

[2]

Krishnan RK, . Quantitative analysis of the TNF-alpha-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKbeta substrate. Nat. Commun., 2015, 6

[3]

Mikuda N, . The IκB kinase complex is a regulator of mRNA stability. EMBO J., 2018, 37

[4]

Page A, Navarro M, Suarez-Cabrera C, Bravo A, Ramirez A. Context-dependent role of IKKbeta in cancer. Genes (Basel), 2017, 8: E376.

[5]

Page A, . IKKbeta overexpression leads to pathologic lesions in stratified epithelia and exocrine glands and to tumoral transformation of oral epithelia. Mol. Cancer Res., 2011, 9: 1329-1338.

[6]

Blackburn J, . Excess NF-kappaB induces ectopic odontogenesis in embryonic incisor epithelium. J. Dent. Res., 2015, 94: 121-128.

[7]

Page A, . IKKbeta-Mediated resistance to skin cancer development is Ink4a/Arf-dependent. Mol. Cancer Res., 2017, 15: 1255-1264.

[8]

Wright JM, Vered M. Update from the 4th edition of the World Health Organization classification of head and neck tumours: odontogenic and maxillofacial bone tumors. Head. Neck Pathol., 2017, 11: 68-77.

[9]

Sandoval-Basilio J, . Epigenetic mechanisms in odontogenic tumors: a literature review. Arch. Oral. Biol., 2018, 87: 211-217.

[10]

Järvinen E, . Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc. Natl Acad. Sci. USA, 2006, 103: 18627-18632.

[11]

Liu F, . Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol., 2008, 313: 210-224.

[12]

Xavier GM, . Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation. Sci. Rep., 2015, 5

[13]

Henson BJ, Bhattacharjee S, O’Dee DM, Feingold E, Gollin SM. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosome Canc., 2009, 48: 569-582.

[14]

Nakanishi H, . Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene, 2014, 33: 702-712.

[15]

Manasa V, Kannan S. Impact of microRNA dynamics on cancer hallmarks: an oral cancer scenario. Tumor Biol., 2017, 39: 1010428317695920.

[16]

Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in cancer. Front. Genet., 2017, 8: 31-31.

[17]

Ernst, H. et al. in International Classification of Rodent Tumors. The Mouse. (ed Mohr, U.) (Springer-Verlag, 2013).

[18]

Jimi E, . NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. Oral. Sci. Int., 2016, 13: 1-6.

[19]

Martinez-Martinez M, . Comparative histological and immunohistochemical study of ameloblastomas and ameloblastic carcinomas. Med. Oral. Patol. Oral. Cir. Bucal, 2017, 22: e324-e332.

[20]

Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

[21]

Wang X, . Regulation of let-7 and its target oncogenes (Review). Oncol. Lett., 2012, 3: 955-960.

[22]

Cai W.-Y., Wei T.-Z., Luo Q.-C., Wu Q.-W., Liu Q.-F., Yang M., Ye G.-D., Wu J.-F., Chen Y.-Y., Sun G.-B., Liu Y.-J., Zhao W.-X., Zhang Z.-M., Li B.-A.. The Wnt- -catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. Journal of Cell Science, 2013, 126(13): 2877-2889.

[23]

Sun Y-M, Lin K-Y, Chen Y-Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol., 2013, 6: 6.

[24]

Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death & Differentiation, 2009, 17(2): 193-199.

[25]

Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget, 2016, 8: 14089-14106.

[26]

Li YQ, . MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death Dis., 2015, 6

[27]

Oommen S, . Distinct roles of microRNAs in epithelium and mesenchyme during tooth development. Dev. Dynam., 2012, 241: 1465-1472.

[28]

Bei JX, . A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat. Genet., 2010, 42: 599-603.

[29]

Moreira PR, . Methylation frequencies of cell-cycle associated genes in epithelial odontogenic tumours. Arch. Oral. Biol., 2009, 54: 893-897.

[30]

Nagi R, Sahu S, Rakesh N. Molecular and genetic aspects in the etiopathogenesis of ameloblastoma: an update. J. Oral. Maxillofac. pathol., 2016, 20: 497-504.

[31]

Galvao CF, . Loss of heterozygosity (LOH) in tumour suppressor genes in benign and malignant mixed odontogenic tumours. J. Oral. Pathol. Med., 2012, 41: 389-393.

[32]

Kamijo T, . Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell, 1997, 91: 649-659.

[33]

Rauch DA, . The ARF tumor suppressor regulates bone remodeling and osteosarcoma development in mice. PLoS ONE, 2011, 5

[34]

Prakash S, Swaminathan U, Nagamalini BR, Krishnamurthy AB. Beta-catenin in disease. J. Oral. Maxillofac. Pathol., 2016, 20: 289-299.

[35]

Jonkers J, . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet., 2001, 29: 418-425.

[36]

Matheu A, . Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev., 2004, 18: 2736-2746.

[37]

Page A, . IKKbeta leads to an inflammatory skin disease resembling interface dermatitis. J. Invest. Dermatol., 2010, 130: 1598-1610.

[38]

Page A, . Protective role of p53 in skin cancer: carcinogenesis studies in mice lacking epidermal p53. Oncotarget, 2016, 7: 20902-20918.

[39]

Moral M, . Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res., 2009, 69: 1099-1108.

[40]

Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res., 2002, 30

Funding

Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)(PI17/00578, CB16/12/00228, PI17/00578, CB16/12/00228, PI17/00578, PI16/00161, PI17/00578, CB16/12/00228)

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/