Hollow silica reinforced magnesium nanocomposites with enhanced mechanical and biological properties with computational modeling analysis for mandibular reconstruction

Somasundaram Prasadh , Vyasaraj Manakari , Gururaj Parande , Raymond Chung Wen Wong , Manoj Gupta

International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 31

PDF
International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 31 DOI: 10.1038/s41368-020-00098-x
Article

Hollow silica reinforced magnesium nanocomposites with enhanced mechanical and biological properties with computational modeling analysis for mandibular reconstruction

Author information +
History +
PDF

Abstract

The present study investigates Mg-SiO2 nanocomposites as biodegradable implants for orthopedic and maxillofacial applications. The effect of presence and progressive addition of hollow silica nanoparticles (0.5, 1, and 1.5) vol.% on the microstructural, mechanical, degradation, and biocompatibility response of pure Mg were investigated. Results suggest that the increased addition of hollow silica nanoparticles resulted in a progressive increase in yield strength and ultimate compressive strength with Mg-1.5 vol.% SiO2 exhibiting superior enhancement. The response of Mg-SiO2 nanocomposites under the influence of Hanks’ balanced salt solution revealed that the synthesized composites revealed lower corrosion rates, indicating rapid dynamic passivation when compared with pure Mg. Furthermore, cell adhesion and proliferation of osteoblast cells were noticeably higher than pure Mg with the addition of 1 vol.% SiO2 nanoparticle. The biocompatibility and the in vitro biodegradation of the Mg-SiO2 nanocomposites were influenced by the SiO2 content in pure Mg with Mg-0.5 vol.% SiO2 nanocomposite exhibiting the best corrosion resistance and biocompatibility when compared with other nanocomposites. Enhancement in mechanical, corrosion, and biocompatibility characteristics of Mg-SiO2 nanocomposites developed in this study are also compared with properties of other metallic biomaterials used in alloplastic mandibular reconstruction in a computational model.

Cite this article

Download citation ▾
Somasundaram Prasadh, Vyasaraj Manakari, Gururaj Parande, Raymond Chung Wen Wong, Manoj Gupta. Hollow silica reinforced magnesium nanocomposites with enhanced mechanical and biological properties with computational modeling analysis for mandibular reconstruction. International Journal of Oral Science, 2020, 12(1): 31 DOI:10.1038/s41368-020-00098-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Prasadh S, . The potential of magnesium based materials in mandibular reconstruction. Metals, 2019, 9: 302.

[2]

Angrisani N, . Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta Biomater., 2016, 44: 355-365.

[3]

Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J. Alloy. Compd., 2019, 792: 1162-1190.

[4]

Liu C, . Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning, 2018, 2018: 9216314.

[5]

Dziuba D, . Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomater., 2013, 9: 8548-8560.

[6]

Hiromoto S, Inoue M, Taguchi T, Yamane M, Ohtsu N. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater., 2015, 11: 520-530.

[7]

Kraus T, . Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater., 2012, 8: 1230-1238.

[8]

Manakari V, Parande G, Gupta M. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals, 2017, 7: 2.

[9]

Scheideler L, . Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomater., 2013, 9: 8740-8745.

[10]

Kujur MS, . Significantly enhancing the ignition/compression/damping response of monolithic magnesium by addition of Sm2O3 nanoparticles. Metals, 2017, 7: 357.

[11]

Cui Z, . Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Mater. Charact., 2019, 151: 620-631.

[12]

Kujur MS, . Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles. Ceram. Int., 2018, 44: 15035-15043.

[13]

Brooks EK, Ehrensberger MT. Bio-corrosion of magnesium alloys for orthopaedic applications. J. Funct. Biomater., 2017, 8: 38.

[14]

Guo C-W, Yu Q, Sun B-Z, Wang C-Y, Yang J-X. Evaluation of alveolar bone repair with mineralized collagen block reinforced with Mg–Ca alloy rods. J. Biomater. Tissue Eng., 2018, 8: 1-10.

[15]

Wang G, . Nanostructured glass–ceramic coatings for orthopaedic applications. J. R. Soc. Interface, 2011, 8: 1192-1203.

[16]

Parande G, Manakari V, Gupta H, Gupta M. Magnesium-β-tricalcium phosphate composites as a potential orthopedic implant: a mechanical/damping/immersion perspective. Metals, 2018, 8: 343.

[17]

Thornby J, . Indentation-based characterization of creep and hardness behavior of magnesium carbon nanotube nanocomposites at room temperature. SN Appl. Sci., 2019, 1: 695.

[18]

Gupta, M., Parande, G. & Manakari, V. In 17th Australian International Aerospace Congress: AIAC 2017. 270 (Engineers Australia, Royal Aeronautical Society).

[19]

Gupta M, Wong W. Magnesium-based nanocomposites: lightweight materials of the future. Mater. Charact., 2015, 105: 30-46.

[20]

Parande G, Manakari V, Meenashisundaram GK, Gupta M. Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int. J. Mater. Res., 2016, 107: 1091-1099.

[21]

Parande G, Manakari V, Meenashisundaram GK, Gupta M. Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates. J. Mater. Res., 2017, 32: 2169-2178.

[22]

Parande G, Manakari V, Wakeel S, Kujur MS, Gupta M. Enhancing mechanical response of monolithic magnesium using nano-NiTi (Nitinol) particles. Metals, 2018, 8: 1014.

[23]

Ong THD, Yu N, Meenashisundaram GK, Schaller B, Gupta M. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique. Mater. Sci. Eng., 2017, 78: 647-652.

[24]

Yu X, Yang K, Chen X, Li W. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy. Biomaterials, 2017, 143: 120-129.

[25]

Coll C, . Enzyme‐mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. Angew. Chem. Int. Ed., 2011, 50: 2138-2140.

[26]

Tallury P, Payton K, Santra S. Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine, 2008, 3: 579-592.

[27]

Vivero‐Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6: 1952-1967.

[28]

Krishnan V, Lakshmi T. Bioglass: a novel biocompatible innovation. J. Adv. Pharm. Technol. Res., 2013, 4: 78.

[29]

Wan Y, . Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Mater. Des., 2016, 99: 521-527.

[30]

Beck GR Jr, . Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. Nanotechnol. Biol. Med., 2012, 8: 793-803.

[31]

Gaihre B, Lecka-Czernik B, Jayasuriya AC. Injectable nanosilica–chitosan microparticles for bone regeneration applications. J. Biomater. Appl., 2018, 32: 813-825.

[32]

Halas NJ. Nanoscience under glass: the versatile chemistry of silica nanostructures. ACS Nano, 2008, 2: 179-183.

[33]

Zhang XQ, Chen G, Wang Y, Han MY. Effects of hot extrusion and aging on microstructure and mechanical properties of Mg-Zn-Si-Ca magnesium alloy. Adv. Mater. Res., 2013, 668: 823-829.

[34]

Parande, G., Manakari, V., Sharma Kopparthy, S. D. & Gupta, M. A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy. Composites Part B: Eng. 182, 107650 (2019).

[35]

Tun K, . Investigation into tensile and compressive responses of Mg–ZnO composites. Mater. Sci. Technol., 2012, 28: 582-588.

[36]

Hermawan, H. Biodegradable metals: from concept to applications. (Springer Science & Business Media, 2012).

[37]

Song G, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv. Eng. Mater., 2003, 5: 837-858.

[38]

Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Biocompatibility and biodegradability of Mg–Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater., 2013, 9: 5319-5330.

[39]

Parande G, . Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. J. Mech. Behav. Biomed. Mater., 2020, 103: 103584.

[40]

Grigolato R, . Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect. Int. J. Clin. Exp. Med., 2015, 8: 281.

[41]

Leonhardt H, Franke A, McLeod N, Lauer G, Nowak A. Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw. Br. J. Oral. Maxillofac. Surg., 2017, 55: 623-625.

[42]

Lee J-Y, . Biomechanical evaluation of magnesium-based resorbable metallic screw system in a bilateral sagittal split ramus osteotomy model using three-dimensional finite element analysis. J. Oral. Maxillofac. Surg., 2014, 72: e401-e402. e413

[43]

Kejlova K, Labský J, Jirova D, Bendova H. Hydrophilic polymers—biocompatibility testing in vitro. Toxicol. Vitr., 2005, 19: 957-962.

[44]

Zhang E, Yin D, Xu L, Yang L, Yang K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater. Sci. Eng.: C., 2009, 29: 987-993.

[45]

Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30: 484-498.

[46]

Li Y, . Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol. Vitr., 2011, 25: 1343-1352.

[47]

Waters KM, . Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci., 2009, 107: 553-569.

[48]

Ye Y, Liu J, Chen M, Sun L, Lan M. In vitro toxicity of silica nanoparticles in myocardial cells. Environ. Toxicol. Pharmacol., 2010, 29: 131-137.

[49]

Lanone S, . Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. fibre Toxicol., 2009, 6

[50]

Amaravathy P, Sowndarya S, Sathyanarayanan S, Rajendran N. Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications. Surf. Coat. Technol., 2014, 244: 131-141.

[51]

Park JW, Kim YJ, Jang JH, Song H. Osteoblast response to magnesium ion‐incorporated nanoporous titanium oxide surfaces. Clin. Oral Implants Res., 2010, 21: 1278-1287.

[52]

Zreiqat H, . Mechanisms of magnesium‐stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res., 2002, 62: 175-184.

[53]

Lipski AM, Pino CJ, Haselton FR, Chen I-W, Shastri VP. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials, 2008, 29: 3836-3846.

[54]

Altankov G, Groth T. Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J. Mater. Sci., 1994, 5: 732-737.

[55]

Hughes, S. & McCarthy, I. D. Sciences basic to orthopaedics. (WB Saunders, 1998).

[56]

Daegling DJ, Hylander WL. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am. J. Phys. Anthropol., 2000, 112: 541-551.

[57]

Prasadh S, . Biomechanics of alloplastic mandible reconstruction using biomaterials: the effect of implant design on stress concentration influences choice of material. J. Mech. Behav. Biomed. Mater., 2020, 103: 103548.

[58]

Flanagan D, Ilies H, McCullough P, McQuoid S. Measurement of the fatigue life of mini dental implants: a pilot study. J. Oral. Implantol., 2008, 34: 7-11.

[59]

Harada K, Watanabe M, Ohkura K, Enomoto S. Measure of bite force and occlusal contact area before and after bilateral sagittal split ramus osteotomy of the mandible using a new pressure-sensitive device: a preliminary report. J. Oral Maxillofac. Surg., 2000, 58: 370-373.

[60]

Madsen MJ, Haug RH. A biomechanical comparison of 2 techniques for reconstructing atrophic edentulous mandible fractures. J. Oral Maxillofac. Surg., 2006, 64: 457-465.

[61]

Wedel A, Yontchev E, Carlsson GE, Ow R. Masticatory function in patients with congenital and acquired maxillofacial defects. J. Prosthet. Dent., 1994, 72: 303-308.

[62]

Wong R, Tideman H, Kin L, Merkx M. Biomechanics of mandibular reconstruction: a review. Int. J. oral. Maxillofac. Surg., 2010, 39: 313-319.

[63]

Curtis D, Plesh O, Hannam A, Sharma A, Curtis T. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J. Prosthet. Dent., 1999, 81: 167-173.

[64]

Gupta, M. & Ling, S. N. M. Magnesium, magnesium alloys, and magnesium composites. (John Wiley & Sons, 2011).

[65]

Manakari, V., Parande, G., Doddamani, M. & Gupta, M. Enhancing the ignition, hardness and compressive response of magnesium by reinforcing with hollow glass microballoons. Materials (Basel) 10, https://doi.org/10.3390/ma10090997 (2017).

Funding

Ministry of Education - Singapore (MOE)(WBS# R-265-000-684-114, WBS# R-265-000-684-114, WBS# R-265-000-684-114, WBS# R-265-000-684-114, WBS# R-265-000-684-114)

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/