miR-4651 inhibits cell proliferation of gingival mesenchymal stem cells by inhibiting HMGA2 under nifedipine treatment

Xiao Han , Ruzhuang Yang , Haoqing Yang , Yangyang Cao , Nannan Han , Chen Zhang , Ruitang Shi , Zhengting Zhang , Zhipeng Fan

International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 10

PDF
International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 10 DOI: 10.1038/s41368-020-0076-8
Article

miR-4651 inhibits cell proliferation of gingival mesenchymal stem cells by inhibiting HMGA2 under nifedipine treatment

Author information +
History +
PDF

Abstract

Drug-induced gingival overgrowth (DIGO) is recognized as a side effect of nifedipine (NIF); however, the underlying molecular mechanisms remain unknown. In this study, we found that overexpressed miR-4651 inhibits cell proliferation and induces G0/G1-phase arrest in gingival mesenchymal stem cells (GMSCs) with or without NIF treatment. Furthermore, sequential window acquisition of all theoretical mass spectra (SWATH-MS) analysis, bioinformatics analysis, and dual-luciferase report assay results confirmed that high-mobility group AT-hook 2 (HMGA2) is the downstream target gene of miR-4651. Overexpression of HMGA2 enhanced GMSC proliferation and accelerated the cell cycle with or without NIF treatment. The present study demonstrates that miR-4651 inhibits the proliferation of GMSCs and arrests the cell cycle at the G0/G1 phase by upregulating cyclin D and CDK2 while downregulating cyclin E through inhibition of HMGA2 under NIF stimulation. These findings reveal a novel mechanism regulating DIGO progression and suggest the potential of miR-4651 and HMGA2 as therapeutic targets.

Cite this article

Download citation ▾
Xiao Han, Ruzhuang Yang, Haoqing Yang, Yangyang Cao, Nannan Han, Chen Zhang, Ruitang Shi, Zhengting Zhang, Zhipeng Fan. miR-4651 inhibits cell proliferation of gingival mesenchymal stem cells by inhibiting HMGA2 under nifedipine treatment. International Journal of Oral Science, 2020, 12(1): 10 DOI:10.1038/s41368-020-0076-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chacko LN, Abraham S. Phenytoin‐induced gingival enlargement. BMJ Case Rep., 2014, 2014: bcr2014204670.

[2]

Mitic K, . The role of inflammation and apoptosis in cyclosporine A‐induced gingival overgrowth. Bosn. J. Basic Med. Sci., 2013, 13: 14-20.

[3]

Livada R, Shiloah J. Calcium channel blocker‐induced gingival enlargement. J. Hum. Hypertens., 2014, 28: 10-14.

[4]

Khocht A, Schneider LC. Periodontal management of gingival overgrowth in the heart transplant patient: a case report. J. Periodontol., 1997, 68: 1140-1146.

[5]

Gopal S, Joseph R, Santhosh VC, Kumar VVH, Shete AR. Prevalence of gingival overgrowth induced by antihypertensive drugs: a hospital-based study. J. Indian Soc. Periodontol., 2015, 19: 308-311.

[6]

Nakib N, Ashrafi SS. Drug‐induced gingival over‐growth. Dis.‐a‐Mon., 2011, 57: 225-230.

[7]

Trackman PC, Kantarci A. Molecular and clinical aspects of drug-induced gingival overgrowth. J. Dent. Res., 2015, 94: 540-546.

[8]

Li WL, Wu CH, Yang J, Chen LJ, Zhao SL. Local inflammation alters MMP-2 and MMP-9 gelatinase expression associated with the severity of nifedipine-induced gingival overgrowth: a rat model study. Inflammation, 2015, 38: 1517-1528.

[9]

Sume SS, Kantarci A, Lee A, Hasturk H, Trackman PC. Epithelial to mesenchymal transition in gingival overgrowth. Am. J. Pathol., 2010, 177: 208-218.

[10]

Lamouille S, Subramanyam D, Blelloch R, Derynck R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr. Opin. Cell Biol., 2013, 25: 200-207.

[11]

Jin SH, . Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J. Periodontal Res., 2015, 50: 461-467.

[12]

Grawish ME. Gingival-derived mesenchymal stem cells: an endless resource for regenerative dentistry. World J. Stem Cells, 2018, 10: 116-118.

[13]

Venkatesh D, Mohan KP, Alur J. Gingival mesenchymal stem cells. J. Oral. Maxillofac. Pathol., 2017, 21: 296.

[14]

Li N, Jin Y. Inflammatory environment induces gingival tissue‐specific mesenchymal stem cells to differentiate towards a pro‐fibrotic phenotype. Biol. Cell, 2013, 105: 261-275.

[15]

Borghese B, Zondervan KT, Abrao MS, Chapron C, Vaiman D. Recent insights on the genetics and epigenetics of endometriosis. Clin. Genet., 2017, 91: 254-264.

[16]

Laganà AS, Salmeri FM. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med. Hypotheses, 2017, 103: 10-20.

[17]

Kokcu A. A current view of the role of epigenetic changes in the aetiopathogenesis of endometriosis. J. Obstet. Gynaecol., 2016, 36: 153-159.

[18]

Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis., 2015, 35: 003-011.

[19]

Ambros V. The functions of animal microRNAs. Nature, 2004, 431: 350-355.

[20]

Yin WZ, Li F, Zhang L, Ren XP, Wen JF. Down-regulation of microrna-205 promotes gastric cancer cell proliferation. Eur. Rev. Med Pharm. Sci., 2014, 18: 1027-1032.

[21]

Tang Y, Wan W, Wang L, Ji S, Zhang J. MicroRNA-451 inhibited cell proliferation, migration and invasion through regulation of MIF in renal cell carcinoma. Int J. Clin. Exp. Pathol., 2015, 8: 15611-15621.

[22]

Cheng Y, Xiang G, Meng Y, Dong R. Mirna-183-5p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting the PDCD4. Reprod. Biol., 2016, 16: 225-233.

[23]

Kilpinen L, . Expansion induced microRNA changes in bone marrow mesenchymal stromal cells reveals interplay between immune regulation and cell cycle. Aging, 2016, 8: 2799-2813.

[24]

Qu B, Xia X, Wu HH, Tu CQ, Pan XM. PDGF-regulated mirna-138 inhibits the osteogenic differentiation of mesenchymal stem cells. Biochem Biophys. Res Commun., 2014, 448: 241-247.

[25]

Khan AQ, Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells, 2019, 8: 840.

[26]

Han X, . The miR-3940-5pinhibits cell proliferation of gingival mesenchymal stem cells. Oral. Dis., 2019, 25: 1363-1373.

[27]

Wu X, Xi Z, Liao P, Huang H, Long X. Diagnostic and prognostic potential of serum microRNA-4651 for patients with hepatocellular carcinoma related to aflatoxin B1. Oncotarget, 2017, 8: 81235-81249.

[28]

Tan Y, . MicroRNA 4651 regulates nonsense-mediated mRNA decay by targeting SMG9 mRNA. Gene, 2019, 15: 65-71.

[29]

Kantarci A, . Apoptosis in gingival overgrowth tissues. J. Dent. Res., 2007, 86: 888-892.

[30]

Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol. Cell Pharm., 2011, 3: 83.

[31]

Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8: 543-552.

[32]

Shao Y, Liu X, Meng J, Ma Z, Yang G. MicroRNA-1251-5p promotes carcinogenesis and autophagy via targeting the tumor suppressor TBCC in ovarian cancer cells. Mol. Ther., 2019, 27: 1653-1664.

[33]

Wei W, . MiR-1284 suppresses gastric cancer progression by targeting EIF4A1. Onco Targets Ther., 2019, 12: 3965-3976.

[34]

Zhong Y, . KCTD12 promotes tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition. Oncogene, 2017, 36: 6177-6189.

[35]

Ni X, Cao X, Wu Y, Wu J. Fstl1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncol. Rep., 2018, 39: 13-20.

[36]

Arbel-Goren R, Levy Y, Ronen D, Zick Y. Cyclin-dependent kinase inhibitors and jnk act as molecular switches, regulating the choice between growth arrest and apoptosis induced by galectin-8. J. Biol. Chem., 2005, 280: 19105-19114.

[37]

Tang H, . High brain acid soluble protein 1(BASP1) is a poor prognostic factor for cervical cancer and promotes tumor growth. Cancer Cell Int., 2017, 17

[38]

Hammond SM, Sharpless NE. HMGA2, microRNAs, and stem cell aging. Cell, 2008, 135: 1013-1016.

[39]

Pfannkuche K, Summer H, Li O, Jürgen Hescheler, DrGe P. The high mobility group protein HMGA2: a co-regulator of chromatin structure and pluripotency in stem cells?. Stem Cell Rev. Rep., 2009, 5: 224-230.

[40]

Esmailzadeh S, Mansoori B, Mohammadi A, Shanehbandi D, Baradaran B. siRNA-mediated silencing of HMGA2 induces apoptosis and cell cycle arrest in human colorectal carcinoma. J. Gastrointest. Cancer, 2017, 48: 156-163.

[41]

Tan L, . Silencing of HMGA2 reverses retardance of cell differentiation in human myeloid leukaemia. Br. J. Cancer, 2018, 118: 405-415.

[42]

Wang MJ, Zhang H, Li J, Zhao HD. microRNA-98 inhibits the proliferation, invasion, migration and promotes apoptosis of breast cancer cells by binding to HMGA2. Biosci. Rep., 2018, 38: BSR20180571.

[43]

Xi X, . MicroRNA-204-3p represses colon cancer cells proliferation, migration, and invasion by targeting HMGA2. J. Cell Physiol., 2019, 235: 1330-1338.

[44]

Kang NN, . MiR-490-3p inhibited the proliferation and metastasis of esophageal squamous cell carcinoma by targetingHMGA2. Eur. Rev. Med. Pharm. Sci., 2018, 22: 8298-8305.

[45]

Ye K, . Effect of no rcantharidin on the proliferation, apoptosis, and cell cycle of human mesangial cells. Ren. Fail., 2017, 39: 458-464.

[46]

Chen J, Zeng J, Xin M, Huang W, Chen X. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/AKT pathways in vitro and in vivo. Horm. Metab. Res., 2011, 43: 681-686.

[47]

Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene, 2009, 28: 2925-2939.

[48]

Ming P, . A novel arylbenzofuran induces cervical cancer cell apoptosis and G1/S arrest through ERK-mediated Cdk2/cyclin-A signaling pathway. Oncotarget, 2016, 7: 41843-41856.

[49]

Gu X, . Dual control of Shuang huang Shengbai granule on upstream and downstream signal modulators of CyclinD-CDK4/6signaling pathway of cell cycle in Lewis-bearing mice with cyclophosphamide-induced myelosuppression. Onco Targets Ther., 2013, 6: 199-209.

[50]

Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366: 704-707.

[51]

Hiraoka D, Hosoda E, Chiba K, Kishimoto T. SGK phosphorylates Cdc25 and Myt1to trigger cyclin B-Cdk1 activation at the meiotic G2/M transition. J. Cell Biol., 2019, 218: 3597-3611.

[52]

Li L, . TRIM22 knockdown suppresses chronic myeloid leukemia via inhibiting PI3K/AKT/mTOR signaling pathway. Cell Biol. Int., 2018, 42: 1192-1199.

[53]

Takeuchi R, Hiratsuka K, Arikawa K, Komiya M, Akimoto Y. Possible pharmacotherapy for nifedipine-induced gingival overgrowth: 18α-glycyrrhetinic acid inhibits human gingival fibroblast growth. Br. J. Pharm., 2016, 173: 913-924.

[54]

Fan ZP, . BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat. Cell Biol., 2009, 11: 1002-1009.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81625005 to Z.P.F., 81625005 to Z.P.F., 81625005 to Z.P.F., 81625005 to Z.P.F., 81625005 to Z.P.F., 81625005 to Z.P.F., 81625005 to Z.P.F.)

the Program for “Hundred-Thousand-Ten thousand” Talents in Beijing (2018A16 to Z.P.F.)

École Nationale d'Ingénieurs de Saint-Etienne (National Engineering School of Saint-Étienne)(81625005 to Z.P.F.)

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/