Oral microbiome: possible harbinger for children’s health
Jin Xiao , Kevin A. Fiscella , Steven R. Gill
International Journal of Oral Science ›› 2020, Vol. 12 ›› Issue (1) : 12
Oral microbiome: possible harbinger for children’s health
The human microbiome functions as an intricate and coordinated microbial network, residing throughout the mucosal surfaces of the skin, oral cavity, gastrointestinal tract, respiratory tract, and reproductive system. The oral microbiome encompasses a highly diverse microbiota, consisting of over 700 microorganisms, including bacteria, fungi, and viruses. As our understanding of the relationship between the oral microbiome and human health has evolved, we have identified a diverse array of oral and systemic diseases associated with this microbial community, including but not limited to caries, periodontal diseases, oral cancer, colorectal cancer, pancreatic cancer, and inflammatory bowel syndrome. The potential predictive relationship between the oral microbiota and these human diseases suggests that the oral cavity is an ideal site for disease diagnosis and development of rapid point-of-care tests. The oral cavity is easily accessible with a non-invasive collection of biological samples. We can envision a future where early life salivary diagnostic tools will be used to predict and prevent future disease via analyzing and shaping the infant’s oral microbiome. In this review, we present evidence for the establishment of the oral microbiome during early childhood, the capability of using childhood oral microbiome to predict future oral and systemic diseases, and the limitations of the current evidence.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Schott, E. M. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight 3, https://doi.org/10.1172/jci.insight.95997 (2018). |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486: 207-214. |
| [27] |
Koenig, J. E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 4578–4585 (2011). |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Ward, T. L. et al. Development of the human mycobiome over the first month of life and across body sites. mSystems 3, https://doi.org/10.1128/mSystems.00140-17 (2018). |
| [33] |
Escapa, I. F., Chen, T., Yanmei Huang, Y., Gajare, P., Dewhirst F. E. & Lemon, K. P. New insights into human nostril microbiome from the expanded Human Oral Microbiome Database (eHOMD): a resource for species-level identification of microbiome data from the aerodigestive tract. mSystems 3, 00187–18 (2018). |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
Richards, V. P. et al. Microbiomes of site-specific dental plaques from children with different caries status. Infect. Immun. 85, https://doi.org/10.1128/IAI.00106-17 (2017). |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
Corstjens, P. L., Abrams, W. R. & Malamud, D. Saliva and viral infections. Periodontology 2000 70, 93–110, https://doi.ort/10.1111/prd.12112 (2016). |
| [73] |
Parras-Molto, M., Suarez-Rodriguez, P., Eguia, A., Aguirre-Urizar, J. M. & Lopez-Bueno, A. Genome sequence of two novel species of torque teno minivirus from the human oral cavity. Genome Announc. 2, https://doi.org/10.1128/genomeA.00868-14 (2014). |
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
Gao, L. et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, https://doi.org/10.1007/s13238-018-0548-1 (2018). |
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
Abusleme, L. et al. Human defects in STAT3 promote oral mucosal fungal and bacterial dysbiosis. JCI Insight 3, https://doi.org/10.1172/jci.insight.122061 (2018). |
| [86] |
|
| [87] |
|
| [88] |
World Health Organization. Preterm Birth (2018). |
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
Yang, Y. et al. Prospective study of oral microbiome and colorectal cancer risk in low-income and African American populations. Int. J. Cancer, https://doi.org/10.1002/ijc.31941 (2018). |
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
Dye, B. A., Li, X. & Thorton-Evans, G. Oral health disparities as determined by selected healthy people 2020 oral health objectives for the United States, 2009-2010. NCHS Data Brief, 1–8 (2012). |
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
Pavlovic, M., Radlovic, N., Lekovic, Z., Berenji, K. & Novak, A. [Corticosteroid therapy in Henoch-Schonlein gastritis]. Srp. Arh. Celok. Lek. 135, 208–211 (2007). |
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
Standards and indications for cardiopulmonary sleep studies in children. American Thoracic Society. Am. J. Respir. Crit. Care Med. 153, 866–878 (1996). |
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)(K23 DE027412)
/
| 〈 |
|
〉 |