Multiple inducible thermogenic mechanisms in the development of cold acclimatization

Huanyu Lu, Wenjing Luo

PDF(513 KB)
PDF(513 KB)
Frigid Zone Medicine ›› 2023, Vol. 3 ›› Issue (2) : 83-91. DOI: 10.2478/fzm-2023-0011
REVIEW

Multiple inducible thermogenic mechanisms in the development of cold acclimatization

Author information +
History +

Abstract

Extreme cold environment can threaten human health and life through increasing the risk of myocardial infarction, stroke, frostbite, and hypothermia. Insufficient heat production to maintain core body temperature is a major cause of cold injury. To cope with cold stress, human and other mammals have developed the capacity of cold acclimatization to adapt to such a harsh environment. Adaptive non-shivering thermogenesis is a ubiquitous form of cold acclimatization. This review article systematically summarizes the role of three inducible thermogenic forms, including food intake, circadian rhythms, and cold exposure in mediating non-shivering thermogenesis under cold exposure and presents the potential interventions for minimizing the adverse health consequences of cold temperature.

Keywords

cold exposure / proteomic profile / hypothalamus / pituitary

Cite this article

Download citation ▾
Huanyu Lu, Wenjing Luo. Multiple inducible thermogenic mechanisms in the development of cold acclimatization. Frigid Zone Medicine, 2023, 3(2): 83‒91 https://doi.org/10.2478/fzm-2023-0011

References

[[1]]
Lei J, Chen R, Yin P, et al. Association between cold spells and mortality risk and burden: a nationwide study in China. Environ Health Perspect, 2022; 130(2): 27006.
[[2]]
Mugele H, Marume K, Amin S B, et al. Control of blood pressure in the cold: differentiation of skin and skeletal muscle vascular resistance. Exp Physiol, 2022; 108(1): 38-49.
[[3]]
Huang S G. Binding of fatty acids to the uncoupling protein from brown adipose tissue mitochondria. Arch Biochem Biophys, 2002; 412(1): 142-146.
[[4]]
Schonfeld P, Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. Biochim Biophys Acta, 2012; 1817(3): 410-418.
[[5]]
De Meis L, Ketzer L A, Camacho-Pereira J, et al. Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates. Biosci Rep, 2012; 32(1): 53-59.
[[6]]
Argentato P P, de Cassia Cesar H, Estadella D, et al. Programming mediated by fatty acids affects uncoupling protein 1 (UCP-1) in brown adipose tissue. Br J Nutr, 2018; 120(6): 619-627.
[[7]]
Paulus A, Drude N, van Marken Lichtenbelt W, et al. Brown adipose tissue uptake of triglyceride-rich lipoprotein-derived fatty acids in diabetic or obese mice under different temperature conditions. EJNMMI Res, 2020; 10(1): 127.
[[8]]
Simcox J, Geoghegan G, Maschek J A, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab, 2017; 26(3): 509-522.
[[9]]
Li B, Li L, Li M, et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep, 2019; 26(10): 2720-2737.
[[10]]
Li Z, Yi C X, Katiraei S, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut, 2018; 67(7): 1269-1279.
[[11]]
Huang W, Man Y, Gao C, et al. Short-Chain fatty acids ameliorate diabetic nephropathy via GPR43-Mediated inhibition of oxidative stress and NF-kappaB signaling. Oxid Med Cell Longev, 2020; 2020: 4074832.
[[12]]
Leiria L O, Wang C H, Lynes M D, et al. 12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. Cell Metab, 2019; (4): 768-783.
[[13]]
Nagatake T, Shibata Y, Morimoto S, et al. 12-Hydroxyeicosapentaenoic acid inhibits foam cell formation and ameliorates high-fat diet-induced pathology of atherosclerosis in mice. Sci Rep, 2021; 11(1): 10426.
[[14]]
Kharazmi-Khorassani J, Ghafarian Zirak R, Ghazizadeh H, et al. The role of serum monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) in cardiovascular disease risk. Acta Biomed, 2021; 92(2): e2021049.
[[15]]
Fleckenstein-Elsen M, Dinnies D, Jelenik T, et al. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes. Mol Nutr Food Res, 2016; 60(9): 2065-2075.
[[16]]
Kim J, Okla M, Erickson A, et al. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J Biol Chem, 2016; 291(39): 20551-20562.
[[17]]
Lynes M D, Leiria L O, Lundh M, et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med, 2017; 23(5): 631-637.
[[18]]
Pinckard K M, Shettigar V K, Wright K R, et al. A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation, 2021; 143(2): 145-159.
[[19]]
Song Z, Xiaoli A M, Yang F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients, 2018; 10(10): 1383.
[[20]]
Martinez Calejman C, Trefely S, Entwisle S W, et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun, 2020; 11(1): 575.
[[21]]
Mills E L, Pierce K A, Jedrychowski M P, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018; 560(7716): 102-106.
[[22]]
Wang T, Xu Y Q, Yuan Y X, et al. Succinate induces skeletal muscle fiber remodeling via SUNCR1 signaling. EMBO Rep, 2019; 20(9): e47892.
[[23]]
Yuan Y, Xu P, Jiang Q, et al. Exercise-induced alpha-ketoglutaric acid stimulates muscle hypertrophy and fat loss through OXGR1- dependent adrenal activation. EMBO J, 2020; 39(7): e103304.
[[24]]
Asadi Shahmirzadi A, Edgar D, Liao C Y, et al. Alpha-Ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab, 2020; 32(3): 447-456.
[[25]]
Lopez-Soriano F J, Fernandez-Lopez J A, Mampel T, et al. Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation. Biochem J, 1988; 252(3): 843-849.
[[26]]
Tome D. Efficiency of free amino acids in supporting muscle protein synthesis. J Nutr, 2022; 152(1): 3-4.
[[27]]
Wu Z, Satterfield M C, Bazer F W, et al. Regulation of brown adipose tissue development and white fat reduction by L-arginine. Curr Opin Clin Nutr Metab Care, 2012; 15(6): 529-38.
[[28]]
Kazak L, Chouchani E T, Jedrychowski M P, et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 2015; 163(3): 643-655.
[[29]]
Yoneshiro T, Wang Q, Tajima K, et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019; 572(7771): 614-619.
[[30]]
Wallace M, Green C R, Roberts L S, et al. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat Chem Biol, 2018; 14(11): 1021-1031.
[[31]]
Balas L, Feillet-Coudray C, Durand T. Branched Fatty Acyl Esters of Hydroxyl Fatty Acids (FAHFAs), appealing beneficial endogenous fat against obesity and Type-2 diabetes. Chemistry, 2018; 24(38): 9463-9476.
[[32]]
Benlebna M, Balas L, Pessemesse L, et al. FAHFAs regulate the proliferation of C2C 12 myoblasts and induce a shift toward a more oxidative phenotype in mouse skeletal muscle. Int J Mol Sci, 2020; 21(23): 9046.
[[33]]
Kellerer T, Kleigrewe K, Brandl B, et al. Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) are associated with diet, bmi, and age. Front Nutr, 2021; 8: 691401.
[[34]]
Chappuis S, Ripperger J A, Schnell A, et al. Role of the circadian clock gene Per 2 in adaptation to cold temperature. Mol Metab, 2013; 2(3): 184-193.
[[35]]
Moraes M N, de Assis L V M, Henriques F D S, et al. Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. Biochim Biophys Acta Mol Mol Metab, 2013; 2(3): 184-193.
[[36]]
Fischl H, McManus D, Oldenkamp R, et al. Cold-induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO J, 2020; 39(22): e105604.
[[37]]
Zhang Z, Cheng L, Ma J, et al. Chronic cold exposure leads to daytime preference in the circadian expression of hepatic metabolic genes. Front Physiol, 2022; 13: 865627.
[[38]]
Barber A F, Sehgal A. Cold temperatures fire up circadian neurons. Cell Metab, 2018; 27(5): 951-953.
[[39]]
Ishii M. Circadian variations in response to cold. Kurume Med J, 1981; 28(3): 211-221.
[[40]]
De Jonghe B C, Hayes M R, Banno R, et al. Deficiency of PTP1B in POMC neurons leads to alterations in energy balance and homeostatic response to cold exposure. Am J Physiol Endocrinol Metab, 201; 300(6): E1002-1011.
[[41]]
Xi D, Gandhi N, Lai M, et al. Ablation of Sim 1 neurons causes obesity through hyperphagia and reduced energy expenditure. PLoS One, 2012; 7(4): e36453.
[[42]]
Takahashi Y, Zhang W, Sameshima K, et al. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice. J Physiol, 2013; 591(22): 5623-5643.
[[43]]
Jeong J H, Lee D K, Blouet C, et al. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism. Mol Metab, 2015; 4(6): 483-492.
[[44]]
Wu C S, Bongmba O Y N, Yue J, et al. Suppression of GHS-R in AgRP neurons mitigates diet-induced obesity by activating thermogenesis. Int J Mol Sci, 2017; 18(4): 832.
[[45]]
Francois M, Qualls-Creekmore E, Berthoud H R. Genetics-based manipulation of adipose tissue sympathetic innervation. Physiol Behav, 2018; 190: 21-27.
[[46]]
Yang W Z, Du X, Zhang W, et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Sci Adv, 2020; 6(36): eabb9414.
[[47]]
Gizowski C, Bourque C W. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature, 2020; 583(7816): 421-424.
[[48]]
Touitou Y, Haus E. Alterations with aging of the endocrine and neuroendocrine circadian system in humans. Chronobiol Int, 2000; 17(3): 369-390.
[[49]]
Sato M, Murakami M, Node K, et al. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep, 2014; 8(2): 393-401.
[[50]]
Hernandez-Morante J J, Gomez-Santos C, Milagro F, et al. Expression of cortisol metabolism-related genes shows circadian rhythmic patterns in human adipose tissue. I nt J Obes (Lond), 2009; 33(4): 473-480.
[[51]]
Stimson R H, Andersson J, Andrew R, et al. Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans. Diabetes, 2009; 58(1): 46-53.
[[52]]
Richards E M, McElhaney E, Zeringue K, et al. Transcriptomic evidence that cortisol alters perinatal epicardial adipose tissue maturation. Am J Physiol Endocrinol Metab, 2019; 317(4): E573-E585.
[[53]]
Vella C A, Nelson O L, Jansen H T, et al. Regulation of metabolism during hibernation in brown bears (Ursus arctos): Involvement of cortisol, PGC-1alpha and AMPK in adipose tissue and skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol, 2020; 240: 110591.
[[54]]
Lechan R M, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res, 2006; 153: 209-235.
[[55]]
Martinez de Mena R, Scanlan T S, Obregon M J. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology, 2010; 151(10): 5074-5083.
[[56]]
Guilherme A, Yenilmez B, Bedard A H, et al. Control of adipocyte thermogenesis and lipogenesis through beta3-Adrenergic and thyroid hormone signal integration. Cell Rep, 2020; 31(5): 107598.
[[57]]
Yau W W, Yen P M. Thermogenesis in adipose tissue activated by thyroid hormone. Int J Mol Sci, 2020; 21(8): 3020.
[[58]]
Zhou J, Tripathi M, Ho J P, et al. Thyroid hormone decreases hepatic steatosis, inflammation, and fibrosis in a dietary mouse model of NASH. Thyroid, 2022; 32(6): 725-738.
[[59]]
Froy O, Garaulet M. The circadian clock in white and brown adipose tissue: mechanistic, endocrine, and clinical aspects. Endocr Rev, 2018; 39(3): 261-273.
[[60]]
Straat M E, Hogenboom R, Boon M R, et al. Circadian control of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids, 2021; 1866(8): 158961.
[[61]]
Heyde I, Begemann K, Oster H. Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology, 2021; 162(3): bqab009.
[[62]]
Gerhart-Hines Z, Feng D, Emmett M J, et al. The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity. Nature, 2013; 503(7476): 410-413.
[[63]]
Adlanmerini M, Carpenter B J, Remsberg J R, et al. Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc Natl Acad Sci U S A, 2019; 116(37): 18691-18699.
[[64]]
Dashti H S, Scheer F, Saxena R, et al. Timing of food intake: identifying contributing factors to design effective interventions. Adv Nutr, 2019; 10(4): 606-620.
[[65]]
Romo-Nava F, Guerdjikova A I, Mori N N, et al. A matter of time: A systematic scoping review on a potential role of the circadian system in binge eating behavior. Front Nutr, 2022; 9: 978412.
[[66]]
Chellappa S L, Qian J, Vujovic N, et al. Daytime eating prevents internal circadian misalignment and glucose intolerance in night work. Sci Adv, 2021; 7(49): eabg9910.
[[67]]
Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev, 2000; 14(23): 2950-2961.
[[68]]
Stunkard A J, Allison K C. Two forms of disordered eating in obesity: binge eating and night eating. Int J Obes Relat Metab Disord, 2003; 27(1): 1-12.
[[69]]
Youngstedt S D, Elliott J A, Kripke D F. Human circadian phase-response curves for exercise. J Physiol, 2019; 597(8): 2253-2268.
[[70]]
Lewis P, Korf H W, Kuffer L, et al. Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: a systematic review. BMJ Open Sport Exerc Med, 2018; 4(1): e000443.
[[71]]
Kraemer W J, Ratamess N A, Hymer W C, et al. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise. Front Endocrinol (Lausanne), 2020; 11: 33.
[[72]]
Haupt S, Eckstein M L, Wolf A, et al. Eat, train, sleep-retreat? hormonal interactions of intermittent fasting, exercise and circadian rhythm. Biomolecules, 2021; 11(4): 516.
[[73]]
Chaput J P, McHill A W, Cox R C, et al. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol, 2022: 1-16.
[[74]]
Buckley T M, Schatzberg A F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab, 2005; 90(5): 3106-3114.
[[75]]
Knutson K L, Spiegel K, Penev P, et al. The metabolic consequences of sleep deprivation. Sleep Med Rev, 2007; 11(3): 163-178.
[[76]]
Mullington J M, Haack M, Toth M, et al. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis, 2009; 51(4): 294-302.
[[77]]
Laposky A D, Bass J, Kohsaka A, et al. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett, 2008; 582(1): 142-151.
[[78]]
Kovanicova Z, Kurdiova T, Balaz M, et al. Cold exposure distinctively modulates parathyroid and thyroid hormones in cold-acclimatized and non-acclimatized humans. Endocrinology, 2020; 161(7): bqaa051.
[[79]]
Li Q, Sun R, Huang C, et al. Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A Mol Integr Physiol, 2001; 129(4): 949-961.
[[80]]
Lu H, Ye Z, Zhai Y, et al. QKI regulates adipose tissue metabolism by acting as a brake on thermogenesis and promoting obesity. EMBO Rep, 2020; 21(1): e47929.
[[81]]
Lu H, Tang S, Xue C, et al. Mitochondrial-Derived peptide MOTS-c increases adipose thermogenic activation to promote cold adaptation. Int J Mol Sci, 2019; 20(10): 2456.
[[82]]
Wang T Y, Liu C, Wang A, et al. Intermittent cold exposure improves glucose homeostasis associated with brown and white adipose tissues in mice. Life Sci, 2015; 139: 153-159.
[[83]]
Nishimura T, Katsumura T, Motoi M, et al. Experimental evidence reveals the UCP 1 genotype changes the oxygen consumption attributed to non-shivering thermogenesis in humans. Sci Rep, 2017; 7(1): 5570.
[[84]]
Larson C J. Translational pharmacology and physiology of brown adipose tissue in human disease and treatment. Handb Exp Pharmacol, 2019; 251: 381-424.
[[85]]
Gonzalez-Hurtado E, Lee J, Choi J, et al. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing. Mol Metab, 2018; 7: 45-56.
[[86]]
Shi M, Huang X Y, Ren X Y, et al. AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nat Cell Biol, 2021; 23(3): 268-277.
[[87]]
Bianco A C, McAninch E A. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol, 2013; 1(3): 250-258.
[[88]]
Razzoli M, Emmett M J, Lazar M A, et al. Beta-Adrenergic receptors control brown adipose UCP-1 tone and cold response without affecting its circadian rhythmicity. FASEB J, 2018; 32(10): 5640-5646.
[[89]]
Lu W H, Chang Y M, Huang Y S. Alternative polyadenylation and differential regulation of Ucp1: implications for brown adipose tissue thermogenesis across species. FASEB J, 2018; 32(10): 5640-5646.
[[90]]
Lim S, Honek J, Xue Y, et al. Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nat Protoc, 2012; 7(3): 606-615.
[[91]]
Honek J, Lim S, Fischer C, et al. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects. Horm Mol Biol Clin Investig, 2014; 19(1): 5-11.
[[92]]
Seki T, Hosaka K, Fischer C, et al. Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning. J Exp Med, 2018; 215(2): 611-626.
[[93]]
Seki T, Hosaka K, Lim S, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun, 2016; 7: 12152.
[[94]]
Xue Y, Petrovic N, Cao R, et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab, 2009; 9(1): 99-109.
[[95]]
Nguyen K D, Qiu Y, Cui X, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature, 2011; 480(7375): 104-108.
[[96]]
Fischer K, Ruiz H H, Jhun K, et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med, 2017; 23(5): 623-630.
[[97]]
Henriques F, Bedard A H, Guilherme A, et al. Single-Cell RNA profiling reveals adipocyte to macrophage signaling sufficient to enhance thermogenesis. Nat Med, 2017; 23(5): 623-630.
[[98]]
Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab, 2015; 22(2): 279-90.
[[99]]
Wei Q, Lee J H, Wang H, et al. Adiponectin is required for maintaining normal body temperature in a cold environment. BMC Physiol, 2017; 17(1): 8.
[[100]]
Mathis D. IL-33, Imprimatur of adipocyte thermogenesis. Cell, 2016; 166(4): 794-795.
[[101]]
Odegaard J I, Lee M W, Sogawa Y, et al. Perinatal licensing of thermogenesis by IL-33 and ST2. Cell, 2016; 166(4): 841-854.
[[102]]
Lee M W, Odegaard J I, Mukundan L, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell, 2015; 160(1- 2): 74-87.
[[103]]
Lee P, Linderman J D, Smith S, et al. Irisin and FGF 21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab, 2014; 19(2): 302-309.
[[104]]
Vliora M, Grillo E, Corsini M, et al. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochim Biophys Acta Gen Subj, 2022; 1866(4): 130085
[[105]]
Zheng S L, Li Z Y, Song J, et al. Metrnl: a secreted protein with new emerging functions. Acta Pharmacol Sin, 2016; 37(5): 571-579.
[[106]]
Jung T W, Lee S H, Kim H C, et al. Metrnl attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARdelta-dependent pathways in skeletal muscle of mice. Exp Mol Med, 2018; 50(9): 1-11.
[[107]]
Lee J O, Byun W S, Kang M J, et al. The myokine meteorin-like (metrnl) improves glucose tolerance in both skeletal muscle cells and mice by targeting AMPKalpha2. FEBS J, 2020; 287(10): 2087-2104.
[[108]]
Chartoumpekis D V, Habeos I G, Ziros P G, et al. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med, 2011; 17(7-8): 736-740.
[[109]]
Lee P, Brychta R J, Linderman J, et al. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab, 2013; 98(1): E98-102.
[[110]]
Peres Valgas da Silva C, Hernandez-Saavedra D, White J D, et al. Cold and exercise: therapeutic tools to activate brown adipose tissue and combat obesity. Biology (Basel), 2019; 8(1): 9.
[[111]]
Ameka M, Markan K R, Morgan D A, et al. Liver derived FGF 21 maintains core body temperature during acute cold exposure. Sci Rep, 2019; 9(1): 630.
[[112]]
Ivanova Y M, Blondin D P. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol, 2021; 130(5): 1448-1459.
[[113]]
Sugimoto S, Mena H A, Sansbury B E, et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat Metab, 2022; 4(6): 775-790.
[[114]]
Spiljar M, Steinbach K, Rigo D, et al. Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab, 2021; 33(11): 2231-2246.
[[115]]
Seki T, Yang Y, Sun X, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature, 2022; 608(7922): 421-428.
PDF(513 KB)

Accesses

Citations

Detail

Sections
Recommended

/